用python绘制3D条形图

时间:2018-09-18 11:11:55

标签: python-2.7 matplotlib 3d histogram

我有一些x和y数据,我想用这些数据生成3D直方图,并带有颜色渐变(bwr或其他颜色)。

我编写了一个脚本,用于绘制有趣的值,其中x和y脓肿的值介于-2和2之间:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt

# To generate some test data
x = np.random.randn(500)
y = np.random.randn(500)

XY = np.stack((x,y),axis=-1)

def selection(XY, limitXY=[[-2,+2],[-2,+2]]):
        XY_select = []
        for elt in XY:
            if elt[0] > limitXY[0][0] and elt[0] < limitXY[0][1] and elt[1] > limitXY[1][0] and elt[1] < limitXY[1][1]:
                XY_select.append(elt)

        return np.array(XY_select)

XY_select = selection(XY, limitXY=[[-2,+2],[-2,+2]])

heatmap, xedges, yedges = np.histogram2d(XY_select[:,0], XY_select[:,1], bins = 7, range = [[-2,2],[-2,2]])
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]


plt.figure("Histogram")
#plt.clf()
plt.imshow(heatmap.T, extent=extent, origin='lower')
plt.show()

给出正确的结果:

enter image description here

现在,我想将其转换为3D直方图。不幸的是,我无法成功使用bar3d正确绘制它,因为默认情况下,它需要x和y的长度来代表脱落。

我非常确定,使用imshow在3D中绘制该图非常简单。就像一个未知选项...

2 个答案:

答案 0 :(得分:2)

我最终成功了。我几乎可以肯定,有更好的方法可以做到这一点,但至少可以有效:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt

# To generate some test data
x = np.random.randn(500)
y = np.random.randn(500)

XY = np.stack((x,y),axis=-1)

def selection(XY, limitXY=[[-2,+2],[-2,+2]]):
        XY_select = []
        for elt in XY:
            if elt[0] > limitXY[0][0] and elt[0] < limitXY[0][1] and elt[1] > limitXY[1][0] and elt[1] < limitXY[1][1]:
                XY_select.append(elt)

        return np.array(XY_select)

XY_select = selection(XY, limitXY=[[-2,+2],[-2,+2]])


xAmplitudes = np.array(XY_select)[:,0]#your data here
yAmplitudes = np.array(XY_select)[:,1]#your other data here


fig = plt.figure() #create a canvas, tell matplotlib it's 3d
ax = fig.add_subplot(111, projection='3d')


hist, xedges, yedges = np.histogram2d(x, y, bins=(7,7), range = [[-2,+2],[-2,+2]]) # you can change your bins, and the range on which to take data
# hist is a 7X7 matrix, with the populations for each of the subspace parts.
xpos, ypos = np.meshgrid(xedges[:-1]+xedges[1:], yedges[:-1]+yedges[1:]) -(xedges[1]-xedges[0])


xpos = xpos.flatten()*1./2
ypos = ypos.flatten()*1./2
zpos = np.zeros_like (xpos)

dx = xedges [1] - xedges [0]
dy = yedges [1] - yedges [0]
dz = hist.flatten()

cmap = cm.get_cmap('jet') # Get desired colormap - you can change this!
max_height = np.max(dz)   # get range of colorbars so we can normalize
min_height = np.min(dz)
# scale each z to [0,1], and get their rgb values
rgba = [cmap((k-min_height)/max_height) for k in dz] 

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=rgba, zsort='average')
plt.title("X vs. Y Amplitudes for ____ Data")
plt.xlabel("My X data source")
plt.ylabel("My Y data source")
plt.savefig("Your_title_goes_here")
plt.show()

我使用这个example,但是我对其进行了修改,因为它引入了偏移量。结果是这样:

enter image description here

答案 1 :(得分:1)

您可以使用以下简单方法生成相同的结果:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-2, 2, 7)
y = np.linspace(-2, 2, 7)

xx, yy = np.meshgrid(x, y)

z = xx*0+yy*0+ np.random.random(size=[7,7])

plt.imshow(z, interpolation='nearest', cmap=plt.cm.viridis, extent=[-2,2,2,2])
plt.show()

from mpl_toolkits.mplot3d import Axes3D
ax = Axes3D(plt.figure())

ax.plot_surface(xx, yy, z, cmap=plt.cm.viridis, cstride=1, rstride=1)
plt.show()

结果如下: enter image description here

Surface plot