我创建了一个python代码,用于解决组套索惩罚线性模型。对于那些不习惯使用这些模型的人,基本思想是为数据集(x)和响应变量(y)以及参数值(lambda1)提供输入,从而改变此参数更改模型的解。因此,我决定使用多重处理库并求解不同的模型(与不同的参数值关联)。我创建了一个名为“ model.py”的python文件,其中包含以下功能:
# -*- coding: utf-8 -*-
from __future__ import division
import functools
import multiprocessing as mp
import numpy as np
from cvxpy import *
def lm_gl_preprocessing(x, y, index, lambda1=None):
lambda_vector = [lambda1]
m = x.shape[1]
n = x.shape[0]
lambda_param = Parameter(sign="positive")
m = m+1
index = np.append(0, index)
x = np.c_[np.ones(n), x]
group_sizes = []
beta_var = []
unique_index = np.unique(index)
for idx in unique_index:
group_sizes.append(len(np.where(index == idx)[0]))
beta_var.append(Variable(len(np.where(index == idx)[0])))
num_groups = len(group_sizes)
group_lasso_penalization = 0
model_prediction = x[:, np.where(index == unique_index[0])[0]] * beta_var[0]
for i in range(1, num_groups):
model_prediction += x[:, np.where(index == unique_index[i])[0]] * beta_var[i]
group_lasso_penalization += sqrt(group_sizes[i]) * norm(beta_var[i], 2)
lm_penalization = (1.0/n) * sum_squares(y - model_prediction)
objective = Minimize(lm_penalization + (lambda_param * group_lasso_penalization))
problem = Problem(objective)
response = {'problem': problem, 'beta_var': beta_var, 'lambda_param': lambda_param, 'lambda_vector': lambda_vector}
return response
def solver(problem, beta_var, lambda_param, lambda_vector):
beta_sol_list = []
for i in range(len(lambda_vector)):
lambda_param.value = lambda_vector[i]
problem.solve(solver=ECOS)
beta_sol = np.asarray(np.row_stack([b.value for b in beta_var])).flatten()
beta_sol_list.append(beta_sol)
return beta_sol_list
def parallel_solver(problem, beta_var, lambda_param, lambda_vector):
# Divide parameter vector into chunks to be executed in parallel
num_chunks = mp.cpu_count()
chunks = np.array_split(lambda_vector, num_chunks)
# Solve problem in parallel
pool = mp.Pool(num_chunks)
global_results = pool.map(functools.partial(solver, problem, beta_var, lambda_param), chunks)
pool.close()
pool.join()
return global_results
如果在python控制台中启动runnig并行求解器,它将提供解决方案。该解决方案不同于顺序求解器提供的解决方案。 如果我重新启动python控制台并启动顺序求解器runnig,然后运行并行求解器,则并行求解器将提供与顺序求解器相同的解决方案。我将显示:
from __future__ import division
from sklearn.datasets import load_boston
import numpy as np
import model as t
boston = load_boston()
x = boston.data
y = boston.target
index = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5])
lambda1 = 1e-3
r1 = t.lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_parallel_1 = t.parallel_solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_parallel_1)
[[array([ 4.61648376e+01, -1.22394832e-04, 0.00000000e+00,
0.00000000e+00, 1.37065733e-04, 1.51910696e-03,
0.00000000e+00, 1.51910696e-03, 0.00000000e+00,
7.00079603e-03, 1.52776114e-03, -8.67357376e-01,
7.16429750e-03, -8.67357376e-01])], [], [], []]
s_1 = t.solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_1)
[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02,
1.97112192e-02, 2.68475527e+00, -1.75142155e+01,
3.80741843e+00, 5.14842823e-04, -1.47105323e+00,
3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])]
#####################################################
r1 = t.lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_1 = t.solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_1)
[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02,
1.97112192e-02, 2.68475527e+00, -1.75142155e+01,
3.80741843e+00, 5.14842823e-04, -1.47105323e+00,
3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])]
s_parallel_1 = t.parallel_solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_parallel_1)
[[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02,
1.97112192e-02, 2.68475527e+00, -1.75142155e+01,
3.80741843e+00, 5.14842823e-04, -1.47105323e+00,
3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])], [], [], []]
PS:我知道在此示例中,我正在使用并行编程来解决具有一个可能参数值的一个模型,但这只是一个小示例,旨在说明此处的顺序编程和并行编程提供的解决方案的区别。因为我在这里完全迷路了,所以我要感谢任何提示。
答案 0 :(得分:1)
如果我执行您的代码,在所有情况下我都会得到相同的结果。这是我正在运行的代码(我合并了两个文件):
from __future__ import division
import functools
import multiprocessing as mp
import numpy as np
from cvxpy import *
from sklearn.datasets import load_boston
def lm_gl_preprocessing(x, y, index, lambda1=None):
lambda_vector = [lambda1]
m = x.shape[1]
n = x.shape[0]
lambda_param = Parameter(sign="positive")
m = m+1
index = np.append(0, index)
x = np.c_[np.ones(n), x]
group_sizes = []
beta_var = []
unique_index = np.unique(index)
for idx in unique_index:
group_sizes.append(len(np.where(index == idx)[0]))
beta_var.append(Variable(len(np.where(index == idx)[0])))
num_groups = len(group_sizes)
group_lasso_penalization = 0
model_prediction = x[:, np.where(index == unique_index[0])[0]] * beta_var[0]
for i in range(1, num_groups):
model_prediction += x[:, np.where(index == unique_index[i])[0]] * beta_var[i]
group_lasso_penalization += sqrt(group_sizes[i]) * norm(beta_var[i], 2)
lm_penalization = (1.0/n) * sum_squares(y - model_prediction)
objective = Minimize(lm_penalization + (lambda_param * group_lasso_penalization))
problem = Problem(objective)
response = {'problem': problem, 'beta_var': beta_var, 'lambda_param': lambda_param, 'lambda_vector': lambda_vector}
return response
def solver(problem, beta_var, lambda_param, lambda_vector):
beta_sol_list = []
for i in range(len(lambda_vector)):
lambda_param.value = lambda_vector[i]
problem.solve(solver=ECOS)
beta_sol = np.asarray(np.row_stack([b.value for b in beta_var])).flatten()
beta_sol_list.append(beta_sol)
return beta_sol_list
def parallel_solver(problem, beta_var, lambda_param, lambda_vector):
# Divide parameter vector into chunks to be executed in parallel
num_chunks = mp.cpu_count()
chunks = np.array_split(lambda_vector, num_chunks)
# Solve problem in parallel
pool = mp.Pool(num_chunks)
global_results = pool.map(functools.partial(solver, problem, beta_var, lambda_param), chunks)
pool.close()
pool.join()
return global_results
if __name__ == "__main__":
boston = load_boston()
x = boston.data
y = boston.target
index = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5])
lambda1 = 1e-3
r1 = lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_parallel_1 = parallel_solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_parallel_1)
r1 = lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_1 = solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_1)
print ("#####################################################")
r1 = lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_1 = solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_1)
r1 = lm_gl_preprocessing(x=x, y=y, index=index, lambda1=lambda1)
s_parallel_1 = parallel_solver(problem=r1['problem'], beta_var=r1['beta_var'], lambda_param=r1['lambda_param'], lambda_vector=r1['lambda_vector'])
print(s_parallel_1)
并输出:
[[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02, 1.97112192e-02,
2.68475527e+00, -1.75142155e+01, 3.80741843e+00, 5.14842823e-04,
-1.47105323e+00, 3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])], [], [], []]
[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02, 1.97112192e-02,
2.68475527e+00, -1.75142155e+01, 3.80741843e+00, 5.14842823e-04,
-1.47105323e+00, 3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])]
#####################################################
[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02, 1.97112192e-02,
2.68475527e+00, -1.75142155e+01, 3.80741843e+00, 5.14842823e-04,
-1.47105323e+00, 3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])]
[[array([ 3.62813738e+01, -1.06995338e-01, 4.64210526e-02, 1.97112192e-02,
2.68475527e+00, -1.75142155e+01, 3.80741843e+00, 5.14842823e-04,
-1.47105323e+00, 3.04949407e-01, -1.23508259e-02, -9.50143293e-01,
9.40708993e-03, -5.25758097e-01])], [], [], []]
如您所见,我拥有相同数量的CPU(4)。
我的环境是Linux上的Python2.7,这些是相关软件包的版本:
>>> import sklearn
>>> sklearn.__version__
'0.19.2'
>>> import scipy
>>> scipy.__version__
'1.1.0'
>>> import numpy
>>> numpy.__version__
'1.15.2'
>>> import cvxpy
>>> cvxpy.__version__
'0.4.0'
>>> import multiprocessing
>>> multiprocessing.__version__
'0.70a1'