我正在尝试建立一个模型,在该模型中必须压缩张量,然后将其输入LSTM。
由于压缩张量不具有layer属性,因此无法编译模型。
Using TensorFlow backend.
Traceback (most recent call last):
File "C:/workspace/keras_test/src/testing.py", line 10, in <module>
model = Model(inputs=model_in, outputs=output)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 93, in __init__
self._init_graph_network(*args, **kwargs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 237, in _init_graph_network
self.inputs, self.outputs)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1353, in _map_graph_network
tensor_index=tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "E:\ProgramData\Miniconda3\envs\py37\lib\site-packages\keras\engine\network.py", line 1312, in build_map
node = layer._inbound_nodes[node_index]
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'
有关最低示例,请参见:
from keras import Input, backend, Model
from keras.layers import LSTM, Dense
input_shape = (128, 1, 1)
model_in = Input(tensor=Input(input_shape), shape=input_shape)
squeezed = backend.squeeze(model_in, 2)
hidden1 = LSTM(10)(squeezed)
output = Dense(1, activation='sigmoid')(hidden1)
model = Model(inputs=model_in, outputs=output)
model.summary()
如何在不丢失图层信息的情况下删除model_in
的一个维度?
答案 0 :(得分:3)
后端操作squeeze
未包装在Lambda层中,因此生成的张量不是Keras张量。结果,它缺少诸如_inbound_nodes
之类的某些属性。您可以按以下步骤包装squeeze
操作:
from keras import Input, backend, Model
from keras.layers import LSTM, Dense, Lambda
input_shape = (128, 1, 1)
model_in = Input(tensor=Input(input_shape), shape=input_shape)
squeezed = Lambda(lambda x: backend.squeeze(x, 2))(model_in)
hidden1 = LSTM(10)(squeezed)
output = Dense(1, activation='sigmoid')(hidden1)
model = Model(inputs=model_in, outputs=output)
model.summary()