Spark作业以汇总Cassandra数据

时间:2018-09-16 04:48:26

标签: scala apache-spark cassandra apache-spark-sql spark-cassandra-connector

我是新来的火花。我在cassandra中有下表:

CREATE TABLE cust_actions (
   orgid text,
   empid int,
   custid int,
   date timestamp,
   action text
   PRIMARY KEY (orgid, empid, custid, date)
) WITH CLUSTERING ORDER BY (empid ASC, custid ASC, date DESC)

此表包含员工对客户执行的每个操作的数据。该表每天获得超过一千万次插入。我有一个3节点的Cassandra集群,在18台核心计算机上运行,​​每台核心计算机32g内存。

我想每天汇总数据,即在某一天对一个客户执行了多少操作。为此,我创建了另一个表:

CREATE TABLE daily_cust_actions (
    custid int,
    date date,
    action text,
    count int,
    PRIMARY KEY (custid, date, action)
) WITH CLUSTERING ORDER BY (date ASC, action ASC)

为此,我想使用spark(请指出这是错误的,还是还有其他替代方法)。我正在其中一台cassandra机器(上面提到)上运行spark,其中主服务器和从服务器具有9个执行程序,这些执行程序每个都有1g ram和2个内核。

表的大小大约为70克。我无法汇总此数据。不过,这对于较小的数据集也可以正常工作。这是我的Spark脚本:

object DailyAggregation {

  def main(args: Array[String]): Unit = {

  val conf = new SparkConf(true).set("spark.cassandra.connection.host", "host1,host2,host3")
    .set("spark.cassandra.auth.username", "cassandra")            
    .set("spark.cassandra.auth.password", "cassandra")            
    .set("spark.cassandra.input.split.size_in_mb", "10") //have tried multiple options here

val sc = new SparkContext("spark://host", "spark-cassandra", conf)

val rdd = sc.cassandraTable("mykeyspace","cust_actions")

val formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd")

val df = new SimpleDateFormat("yyyy-MM-dd")

val startDate = df.parse("2018-08-13")
val endDate = df.parse("2018-09-14")

sc.parallelize(
  rdd.select("custid", "date", "action")
    .where("date >= ? and date < ?", startDate, endDate)
    .keyBy(row => (
      row.getInt("custid"),
      df.format(row.getLong("date")),
      row.getString("action"))).map { case (key, value) => (key, 1) }
    .reduceByKey(_ + _).collect()
    .map { case (key, value) => (key._1, key._2, key._3, value) })
  .saveToCassandra("mykeyspace", "daily_cust_actions")

sc.stop()
 }
}

我尝试了不同的方法,增加/减少了内存/执行程序,增加/减少了spark.cassandra.input.split.size_in_mb值,并调整了一些spark环境变量。但是每次我得到一个不同的错误。它显示了两个阶段,第一阶段始终运行平稳,而第二阶段总是失败。

我看到了很多不同的错误。目前,我收到以下错误:

2018-09-15 16:36:05 INFO TaskSetManager:54 - Task 158.1 in stage 1.1 (TID 1293) failed, but the task will not be re-executed (either because t he task failed with a shuffle data fetch failure, so the previous stage needs to be re-run, or because a different copy of the task has already succeeded). 2018-09-15 16:36:05 WARN TaskSetManager:66 - Lost task 131.1 in stage 1.1 (TID 1286, 127.0.0.1, executor 18): FetchFailed(null, shuffleId=0, m apId=-1, reduceId=131, message= org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 0

这里的任何帮助将不胜感激。

0 个答案:

没有答案