基于其他列的值创建新列的更好方法

时间:2018-09-14 05:01:54

标签: python pandas

创建下面提到的同一列的更好的方法是什么?

col_new = []
for r1 in df['col_A']:
    if r1==1:
        for r2 in df['col_B']:
            if r2!='None':
                col_new.append('col_new')

df['col_new'] = col_new

我的数据帧很大(120k * 22),运行上面的代码使笔记本挂起。有没有一种更快,更有效的方法来创建此列,该列表示col_A为1时col_B的所有非空值。

1 个答案:

答案 0 :(得分:0)

我认为需要创建布尔掩码,然后通过DataFrame.loc附加值:

mask = (df['col_A'] == 1) & (df['col_B']!='None')

#if None is not string
#mask = (df['col_A'] == 1) & (df['col_B'].notnull())
df.loc[mask, 'col_new'] = 'col_new'

示例

列中是字符串None

df = pd.DataFrame({
    'col_A': [1,1,2,1],
    'col_B': ['a','None','None','a']
})
print (df)
   col_A col_B
0      1     a
1      1  None
2      2  None
3      1     a

mask = (df['col_A'] == 1) & (df['col_B']!='None')
df.loc[mask, 'col_new'] = 'val'
print (df)
   col_A col_B col_new
0      1     a     val
1      1  None     NaN
2      2  None     NaN
3      1     a     val

在列not strings Nones中,然后使用Series.notna

df = pd.DataFrame({
    'col_A': [1,1,2,1],
    'col_B': ['a',None,None,'a']
})
print (df)
   col_A col_B
0      1     a
1      1  None
2      2  None
3      1     a

mask = (df['col_A'] == 1) & (df['col_B'].notna())
#oldier pandas versions
#mask = (df['col_A'] == 1) & (df['col_B'].notnull())
df.loc[mask, 'col_new'] = 'val'
print (df)
   col_A col_B col_new
0      1     a     val
1      1  None     NaN
2      2  None     NaN
3      1     a     val

如果还想使用if-else语句numpy.where真的很有帮助:

df['col_new'] = np.where(mask, 'val', 'another_val')
print (df)
   col_A col_B      col_new
0      1     a          val
1      1  None  another_val
2      2  None  another_val
3      1     a          val