在Keras 2.2.2 fit_generator中将batch_size从“ str”转换为“ int”时出错

时间:2018-09-14 00:47:31

标签: keras

我一直在寻找类似的解决方案,但是没有一个适合我所面临的问题,我正在尝试通过以下代码来应用迁移学习:

    import os
import sys
import glob
import argparse
import matplotlib.pyplot as plt
#from keras import backend as K

from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD


IM_WIDTH, IM_HEIGHT = 299, 299 #fixed size for InceptionV3
NB_EPOCHS = 3.0
BAT_SIZE = 32.0
FC_SIZE = 1024
NB_IV3_LAYERS_TO_FREEZE = 172


def get_nb_files(directory):
  """Get number of files by searching directory recursively"""
  if not os.path.exists(directory):
    return 0
  cnt = 0
  for r, dirs, files in os.walk(directory):
    for dr in dirs:
      cnt += len(glob.glob(os.path.join(r, dr + "/*")))
  return cnt


def setup_to_transfer_learn(model, base_model):
  """Freeze all layers and compile the model"""
  for layer in base_model.layers:
    layer.trainable = False
  model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])


def add_new_last_layer(base_model, nb_classes):
  """Add last layer to the convnet
  Args:
    base_model: keras model excluding top
    nb_classes: # of classes
  Returns:
    new keras model with last layer
  """
  x = base_model.output
  x = GlobalAveragePooling2D()(x)
  x = Dense(FC_SIZE, activation='relu')(x) #new FC layer, random init
  predictions = Dense(nb_classes, activation='softmax')(x) #new softmax layer
  model = Model(inputs=base_model.input, outputs=predictions)
  return model


def setup_to_finetune(model):
  """Freeze the bottom NB_IV3_LAYERS and retrain the remaining top layers.
  note: NB_IV3_LAYERS corresponds to the top 2 inception blocks in the inceptionv3 arch
  Args:
    model: keras model
  """
  for layer in model.layers[:NB_IV3_LAYERS_TO_FREEZE]:
     layer.trainable = False
  for layer in model.layers[NB_IV3_LAYERS_TO_FREEZE:]:
     layer.trainable = True
  model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])


def train(args):
  """Use transfer learning and fine-tuning to train a network on a new dataset"""
  nb_train_samples = get_nb_files(args.train_dir)
  nb_classes = len(glob.glob(args.train_dir + "/*"))
  nb_val_samples = get_nb_files(args.val_dir)
  epochs = args.nb_epoch
  batch_size = args.batch_size
  #batch_size = K.cast_to_floatx(batch_size)
  print('nb_train_samples',type(nb_train_samples))
  print('nb_train_samples',type(batch_size))

  steps_per_epoch = nb_train_samples / batch_size
  validation_steps = nb_val_samples / batch_size

  # data prep
  train_datagen =  ImageDataGenerator(
      preprocessing_function=preprocess_input,
      rotation_range=30,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True
  )
  test_datagen = ImageDataGenerator(
      preprocessing_function=preprocess_input,
      rotation_range=30,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True
  )

  train_generator = train_datagen.flow_from_directory(
    args.train_dir,
    target_size=(IM_WIDTH, IM_HEIGHT),
    batch_size=batch_size,
  )

  validation_generator = test_datagen.flow_from_directory(
    args.val_dir,
    target_size=(IM_WIDTH, IM_HEIGHT),
    batch_size=batch_size,
  )

  # setup model
  base_model = InceptionV3(weights='imagenet', include_top=False) #include_top=False excludes final FC layer
  model = add_new_last_layer(base_model, nb_classes)

  # transfer learning
  setup_to_transfer_learn(model, base_model)

  history_tl = model.fit_generator(
            train_generator,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            validation_data=validation_generator,
            validation_steps=validation_steps,
            class_weight=None) 

  # fine-tuning
  setup_to_finetune(model)

  history_ft = model.fit_generator(
    train_generator,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            validation_data=validation_generator,
            validation_steps=validation_steps,
            class_weight=None)

  model.save(args.output_model_file)

  if args.plot:
    plot_training(history_ft)


def plot_training(history):
  acc = history.history['acc']
  val_acc = history.history['val_acc']
  loss = history.history['loss']
  val_loss = history.history['val_loss']
  epochs = range(len(acc))

  plt.plot(epochs, acc, 'r.')
  plt.plot(epochs, val_acc, 'r')
  plt.title('Training and validation accuracy')

  plt.figure()
  plt.plot(epochs, loss, 'r.')
  plt.plot(epochs, val_loss, 'r-')
  plt.title('Training and validation loss')
  plt.show()


if __name__=="__main__":
  a = argparse.ArgumentParser()
  a.add_argument("--train_dir")
  a.add_argument("--val_dir")
  a.add_argument("--nb_epoch", default=NB_EPOCHS)
  a.add_argument("--batch_size", default=BAT_SIZE)
  a.add_argument("--output_model_file", default="inceptionv3-ft.model")
  a.add_argument("--plot", action="store_true")

  args = a.parse_args()
  if args.train_dir is None or args.val_dir is None:
    a.print_help()
    sys.exit(1)

  if (not os.path.exists(args.train_dir)) or (not os.path.exists(args.val_dir)):
    print("directories do not exist")
    sys.exit(1)

train(args)

在从早期Keras版本(2.1.4)进行一系列转换之后,我在fit_generator中相应地更改了参数名称,通常使用Ubuntu终端运行代码,如下所示:

 python fine-tune.py --train_dir train_dir --val_dir val_dir --nb_epoch NB_EPOCH --batch_size BATCH_SIZE --output_model_file inceptionv3-ft.model --plot

我收到以下错误:

/home/raed/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
Using TensorFlow backend.
nb_train_samples <class 'int'>
nb_train_samples <class 'str'>
Traceback (most recent call last):
  File "fine-tune.py", line 183, in <module>
    train(args)
  File "fine-tune.py", line 80, in train
    steps_per_epoch = nb_train_samples / batch_size
TypeError: unsupported operand type(s) for /: 'int' and 'str'

我尝试使用int()转换batch_zise,然后使用cast使用keras的tensorflow后端,并且还出现以下错误:

python fine-tune.py --train_dir train_dir --val_dir val_dir --nb_epoch NB_EPOCH --batch_size BATCH_SIZE --output_model_file inceptionv3-ft.model --plot
/home/raed/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Traceback (most recent call last):
  File "fine-tune.py", line 183, in <module>
    train(args)
  File "fine-tune.py", line 76, in train
    batch_size = K.cast_to_floatx(batch_size)
  File "/home/raed/anaconda3/lib/python3.6/site-packages/keras/backend/common.py", line 110, in cast_to_floatx
    return np.asarray(x, dtype=_FLOATX)
  File "/home/raed/anaconda3/lib/python3.6/site-packages/numpy/core/numeric.py", line 492, in asarray
    return array(a, dtype, copy=False, order=order)
ValueError: could not convert string to float: 'BATCH_SIZE'

我要尝试正确的解决方法吗,有人可以帮助我解决此问题,谢谢!

0 个答案:

没有答案