在Pandas DataFrame中创建名称列

时间:2018-09-13 17:17:38

标签: python pandas

我正在使用Python软件包names来生成一些用于质量检查测试的名字。

names软件包包含函数names.get_first_name(gender),该函数允许使用字符串male或female作为参数。目前,我有以下DataFrame:

    Marital Gender
0   Single  Female
1   Married Male
2   Married Male
3   Single  Male
4   Married Female

我尝试了以下方法:

df.loc[df.Gender == 'Male', 'FirstName'] = names.get_first_name(gender = 'male')
df.loc[df.Gender == 'Female', 'FirstName'] = names.get_first_name(gender = 'female')

但是我得到的只是两个名字:

    Marital Gender  FirstName
0   Single  Female  Kathleen
1   Married Male    David
2   Married Male    David
3   Single  Male    David
4   Married Female  Kathleen

是否有一种方法可以针对每一行分别调用此函数,所以并非所有的男性/女性都具有相同的确切名称?

3 个答案:

答案 0 :(得分:2)

您需要apply

 df['Firstname']=df['Gender'].str.lower().apply(names.get_first_name)

答案 1 :(得分:1)

您可以使用列表理解:

df['Firstname']= [names.get_first_name(gender) for gender in df['Gender'].str.lower()] 

听说有一个黑客程序,它会按性别(及其概率)读取所有名称,然后随机采样。

import names

def get_names(gender):
    if not isinstance(gender, (str, unicode)) or gender.lower() not in ('male', 'female'):
        raise ValueError('Invalid gender')

    with open(names.FILES['first:{}'.format(gender.lower())], 'rb') as fin:
        first_names = []
        probs = []
        for line in fin:
            first_name, prob, dummy, dummy = line.strip().split()
            first_names.append(first_name)
            probs.append(float(prob) / 100)
    return pd.DataFrame({'first_name': first_names, 'probability': probs})

def get_random_first_names(n, first_names_by_gender):
    first_names = (
        first_names_by_gender
        .sample(n, replace=True, weights='probability')
        .loc[:, 'first_name']
        .tolist()
    )
    return first_names

first_names = {gender: get_names(gender) for gender in ('Male', 'Female')}

>>> get_random_first_names(3, first_names['Male'])
['RICHARD', 'EDWARD', 'HOMER']

>>> get_random_first_names(4, first_names['Female'])
['JANICE', 'CAROLINE', 'DOROTHY', 'DIANE']

答案 2 :(得分:0)

如果速度很重要,请使用map

list(map(names.get_first_name,df.Gender))
Out[51]: ['Harriett', 'Parker', 'Alfred', 'Debbie', 'Stanley']
#df['FN']=list(map(names.get_first_name,df.Gender))