在r中间隔重叠的标志行

时间:2018-09-12 19:36:17

标签: r dplyr tidyverse lubridate

我有一个包含电视观看数据的df帧,我想对重叠的观看进行质量检查。假设对于同一天,同一家庭,对于每个人来说,每分钟应该只记入一个电台或一个频道。

例如,我想标记第8、9行,因为在唯一的家庭中,个人似乎不可能同时(start_hour_minute)观看两个电视台(62,67)。我想知道是否有办法标记这些行? 一种按分钟排序的视图,按个人按日查看。

df <- data.frame(stringsAsFactors=FALSE,
         date = c("2018-09-02", "2018-09-02", "2018-09-02", "2018-09-02",
                  "2018-09-02", "2018-09-02", "2018-09-02", "2018-09-02",
                  "2018-09-02"),
         householdID = c(18101276L, 18101276L, 18102843L, 18102843L, 18102843L,
                  18102843L, 18104148L, 18104148L, 18104148L),
   Station_id = c(74L, 74L, 62L, 74L, 74L, 74L, 62L, 62L, 67L),
        IndID = c("aa", "aa", "aa", "aa", "aa", "aa", "aa", "aa", "aa"),
        Start = c(111300L, 143400L, 030000L, 034900L, 064400L, 070500L, 060400L,
                  075100L, 075100L),
          End = c(111459L, 143759L, 033059L, 035359L, 064759L, 070559L, 060459L,
                  81559L, 81559L),
   start_hour_minute = c(1113L, 1434L, 0300L, 0349L, 0644L, 0705L, 0604L, 0751L, 0751L),
     end_hour_minute = c(1114L, 1437L, 0330L, 0353L, 0647L, 0705L, 0604L, 0815L, 0815L))

2 个答案:

答案 0 :(得分:1)

您可以按照您认为应该与单行相对应的变量(例如,住户-日期-分钟组合)进行分组,然后对行(或Station_id中的唯一值)进行计数并添加{{1} },如果该行应被标记,则其他flag = 1

flag = 0

或者,如果您想匹配所有所有个变量,df %>% group_by(date, householdID, start_hour_minute) %>% mutate(flag = if_else(n() == 1, 0, 1)) 除外,则可以

Station_id

答案 1 :(得分:1)

lubridate程序包具有一个inteval类对象和一个%within%函数,该函数检查时间戳是否在间隔内。您可以使用它来获取标志。

使用您在上方提供的虚拟数据...

data_out <- df %>% 
# Get the hour, minute, and second values as standalone numerics.
mutate(
    date = ymd(date),
    Start_Hour = floor(Start / 10000),
    Start_Minute = floor((Start - Start_Hour*10000) / 100),
    Start_Second = (Start - Start_Hour*10000) - Start_Minute*100,
    End_Hour = floor(End / 10000),
    End_Minute = floor((End - End_Hour*10000) / 100),
    End_Second = (End - End_Hour*10000) - End_Minute*100,
# Use the hour, minute, second values to create a start-end timestamp.
    Start_TS = ymd_hms(date + hours(Start_Hour) + minutes(Start_Minute) + seconds(Start_Second)),
    End_TS = ymd_hms(date + hours(Start_Hour) + minutes(Start_Minute) + seconds(Start_Second)),
# Create an interval object.
    Watch_Interval = interval(start = Start_TS, end = End_TS)
) %>% 
# Group by the IDs.
group_by(householdID, Station_id) %>% 
# Flag where the household's interval overlaps with another time.
mutate(
    overlap_flag = case_when(
        sum(Start_TS %within% as.list(Watch_Interval)) == 0 ~ 0,
        sum(Start_TS %within% as.list(Watch_Interval)) > 0 ~ 1,
        TRUE ~ NA_real_
    )
) %>% 
# dplyr doesn't play nice with interval objects, so we should remove Watch_Interval.
select(-Watch_Interval)

使用data_out %>% filter(overlap_flag == 1)查看标记的值。

注意dplyrlubridate软件包并非总是能很好地配合使用,尤其是较旧的版本。您可能需要更新每个软件包的版本。