我有一个带有向量的类,我想用用户选择的两种类型之一来填充。让我们将我的类称为option1和option2
我想做的事情
class storage_class
{
public:
storage_class(int sel, int n)
{
if(sel == 1)
for(int i = 0; i < n; i++)
my_store.push_back(std::make_unique<option1>());
else if(sel == 2)
for(int i = 0; i < n; i++)
my_store.push_back(std::make_unique<option2>());
}
private:
// Something like this but that actually works
std::vector<T> my_store;
};
然后,我想像这样或类似方式使用它,因此无需根据所选选项修改此用法。
int main()
{
storage_class store(1);
int n_iterations = 4;
for(int i = 0; i < n_iterations; i++)
{
store.my_store[i]->create_data();
}
}
类option1和option2将是数学模拟,它将创建数据并将其自身存储在作为该类成员的向量中。
我想将一个选项的多个实例存储在向量中,然后从那里进行操作。我可以使用C ++ 17。
答案 0 :(得分:3)
使用c ++ 17时,您可以简单地将std::variant
用作容器的类型,该容器本身可以保留所有想要的类型。
示例:
class A { public: void Do() { std::cout << "A::Do" << std::endl; } };
class B { public: void Go() { std::cout << "B::Go" << std::endl; } };
template<class... Ts> struct funcs : Ts... { using Ts::operator()...; };
template<class... Ts> funcs(Ts...) -> funcs<Ts...>;
int main()
{
std::vector<std::variant<A,B>> vec;
vec.push_back(A{});
vec.push_back(B{});
for ( auto& el: vec)
{
std::visit( funcs{ [](A& a){ a.Do(); }, [](B& b) { b.Go(); } }, el);
}
}
输出:
A::Do
B::Go
类是完全独立的,可以使用std::visit
简单地调用方法,并在此处传递可调用对象。我提供了一个简单的funcs
实现,它简单地收集了所有可调用实体,从而简化了将调用与不同无关类的不同方法接口的操作。
由于std::variant
是一种带标记的联合,因此需要存储您所使用的最大类型的联合存储。如果这浪费了很多内存,则可以存储指向该实例的指针,如果需要内存管理方面的帮助,可以使用std::unique_ptr
或std::shared_ptr
来存储该实例;)
答案 1 :(得分:2)
标准方法是从option1
制作option2
和base_class
派生的类,这似乎与示例main()
一致。使用通用的Factory
类模板,下面是一个示例:
#include <functional>
#include <iostream>
#include <memory>
#include <unordered_map>
#include <vector>
// Generic Factory class template
template<typename K,typename T,typename... Ts>
class Factory
{
using Map = std::unordered_map<K, std::function<std::unique_ptr<T>(Ts...)>>;
const Map mMap;
public:
Factory(Map&& map):mMap(std::move(map)) { }
std::unique_ptr<T> operator()(const K& key, Ts... args) const
{
const typename Map::const_iterator itr = mMap.find(key);
return itr == mMap.cend() ? nullptr : itr->second(std::forward<Ts>(args)...);
}
};
class base_class
{
public:
virtual void create_data() = 0;
};
class option1 : public base_class
{
public:
void create_data() override
{
std::cout << "I'm option1." << std::endl;
}
};
class option2 : public base_class
{
public:
void create_data() override
{
std::cout << "I'm option2." << std::endl;
}
};
class storage_class
{
using SimulationFactory = Factory<int,base_class>; // Optionally add constructor parameter types
const SimulationFactory simulation_factory; // This can be made static const.
public:
storage_class(int sel, int n)
: simulation_factory(
{ { 1, []() { return std::make_unique<option1>(); } }
, { 2, []() { return std::make_unique<option2>(); } }
})
{
for (int i = 0; i < n; i++)
my_store.push_back(simulation_factory(sel));
}
std::vector<std::unique_ptr<base_class>> my_store;
};
int main()
{
int n_iterations = 4;
storage_class store(1, n_iterations);
for(int i = 0; i < n_iterations; i++)
{
store.my_store[i]->create_data();
}
}
这是使用g++ -std=c++17 main.cc
在Linux上为我编译的。
此代码可以进行一些改进,但是我复制了您的main()
函数以说明基本概念。希望有帮助。
文件:factory.h
#pragma once
#include <functional>
#include <memory>
#include <unordered_map>
// Generic Factory class template
template<typename K,typename T,typename... Ts>
class Factory
{
using Map = std::unordered_map<K, std::function<std::unique_ptr<T>(Ts...)>>;
const Map mMap;
public:
Factory(Map&& map):mMap(std::move(map)) { }
std::unique_ptr<T> operator()(const K& key, Ts... args) const
{
const typename Map::const_iterator itr = mMap.find(key);
return itr == mMap.cend() ? nullptr : itr->second(std::forward<Ts>(args)...);
}
};
文件:main.cc
#include "factory.h"
#include <iostream>
#include <string>
#include <vector>
class base_class
{
public:
virtual void create_data() = 0;
};
class option1 : public base_class
{
const double mD;
public:
option1(double d)
: mD(d)
{ }
void create_data() override
{
std::cout << "I'm option1: mD("<<mD<<')' << std::endl;
}
};
class option2 : public base_class
{
const double mD;
public:
option2(double d)
: mD(d)
{ }
void create_data() override
{
std::cout << "I'm option2: mD("<<mD<<')' << std::endl;
}
};
class storage_class
{
using SimulationFactory = Factory<int,base_class,double>; // Optionally add constructor parameter types
const SimulationFactory simulation_factory; // This can be made static const.
public:
storage_class(int sel, int n)
: simulation_factory(
{ { 1, [](double d) { return std::make_unique<option1>(d); } }
, { 2, [](double d) { return std::make_unique<option2>(d); } }
})
{
for (int i = 0; i < n; i++)
my_store.push_back(simulation_factory(sel,static_cast<double>(i)));
}
std::vector<std::unique_ptr<base_class>> my_store;
};
int main()
{
int n_iterations = 4;
storage_class store1(1, n_iterations);
storage_class store2(2, n_iterations);
for(int i = 0; i < n_iterations; i++)
{
store1.my_store[i]->create_data();
store2.my_store[i]->create_data();
}
}
输出:
I'm option1: mD(0)
I'm option2: mD(0)
I'm option1: mD(1)
I'm option2: mD(1)
I'm option1: mD(2)
I'm option2: mD(2)
I'm option1: mD(3)
I'm option2: mD(3)
答案 2 :(得分:2)
这里是一个示例,尝试使用类storage_class
上的模板参数,使其尽可能与您的示例保持紧密联系。请参见工作版本here。我仅添加了option1
,并在您通过my_store
函数访问成员main
时将其公开。
#include <memory>
#include <vector>
#include <iostream>
struct option1{
void create_data(){ std::cout << "created\n"; }
};
template<typename T>
class storage_class
{
public:
storage_class(int n)
{
for(int i = 0; i < n; i++)
my_store.push_back(std::make_unique<T>());
}
std::vector<std::unique_ptr<T>> my_store;
};
int main()
{
storage_class<option1> store(4);
int n_iterations = 4;
for(int i = 0; i < n_iterations; i++)
{
store.my_store[i]->create_data();
}
}
另一种选择是使用std::variant
。请参见工作版本here。
#include <memory>
#include <vector>
#include <variant>
#include <iostream>
struct option1{
void create_data(){ std::cout << "created 1\n"; }
};
struct option2{
void create_data(){ std::cout << "created 2\n"; }
};
class storage_class
{
public:
using option = std::variant<std::unique_ptr<option1>,std::unique_ptr<option2>>;
storage_class(int sel, int n)
{
if(sel == 0)
for(int i = 0; i < n; i++)
my_store.push_back(option(std::make_unique<option1>()));
else if(sel == 1)
for(int i = 0; i < n; i++)
my_store.push_back(option(std::make_unique<option2>()));
}
std::vector<option> my_store;
};
int main()
{
storage_class store(1, 4);
int n_iterations = 4;
for(int i = 0; i < n_iterations; i++)
{
std::get<1>(store.my_store[i])->create_data();
}
}