我是新手,正在尝试与Keras一起训练模型。我有14节课。
以下是我的训练和测试数据的形状:
print('train data shape:', X_train.shape)
print('one hot shape:', y_train.shape)
print('one hot shape:', y_test.shape)
print('Number of images in x_train', x_train.shape[0])
print('Number of images in x_test', x_test.shape[0])
输出:
train data shape: (77623, 28, 28, 1)
one hot shape: (77623, 14, 14)
one hot shape: (500, 14, 14)
Number of images in x_train 77623
Number of images in x_test 500
这是我的模特:
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(14, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
print(model.summary())
模型摘要:
Layer (type) Output Shape Param #
=================================================================
conv2d_58 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_59 (Conv2D) (None, 24, 24, 64) 18496
_________________________________________________________________
max_pooling2d_27 (MaxPooling (None, 12, 12, 64) 0
_________________________________________________________________
dropout_53 (Dropout) (None, 12, 12, 64) 0
_________________________________________________________________
flatten_27 (Flatten) (None, 9216) 0
_________________________________________________________________
dense_52 (Dense) (None, 128) 1179776
_________________________________________________________________
dropout_54 (Dropout) (None, 128) 0
_________________________________________________________________
dense_53 (Dense) (None, 14) 1806
=================================================================
Total params: 1,200,398
Trainable params: 1,200,398
Non-trainable params: 0
_________________________________________________________________
这是对fit
方法的调用:
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=0,
validation_data=(X_test, y_test), callbacks=[TQDMNotebookCallback()])
但我收到此错误:
Error when checking target: expected dense_53 to have 2 dimensions, but got array with shape (77623, 14, 14)
答案 0 :(得分:0)
也许您必须放置SELECT id FROM TAG_TABLE WHERE position(tag_name in 'aaaaaaaaaaa')>0;
,因为您的图像是28x28灰度
答案 1 :(得分:0)
检查输出形状:应该为(num_samples, classes)
,而不是(num_samples, 14, 14)
。