我遇到了将 cudaMemcpy 与 cudaMemcpyDeviceToHost 结合使用的问题。
有一个具有指针 int * a 的结构,它将在内核函数中分配。 然后,我需要将此 int * a 复制到主机内存中。
我的问题是:我不知道如何使用 cudaMemcpy 无法正常工作。
有我的代码:
#include <cuda_runtime.h>
#include <stdio.h>
typedef struct { int n, m; int *a; } myst;
__global__ void xthread(myst *st)
{
unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;
myst *mst = &st[idx];
mst->n = idx;
mst->m = idx+1;
mst->a = (int *)malloc((mst->m)*sizeof(int));
mst->a[0] = idx;
}
int main(int argc,char **argv)
{
dim3 dimGrid(1);
dim3 dimBlock(2);
myst *mst = NULL;
myst *hst = (myst *)malloc(2 * sizeof(myst));
cudaMalloc(&mst, 2 * sizeof(myst));
xthread<<<dimGrid, dimBlock>>>(mst);
cudaDeviceSynchronize();
cudaMemcpy(&hst[0],&mst[0],sizeof(myst),cudaMemcpyDeviceToHost);
cudaMemcpy(&hst[1],&mst[1],sizeof(myst),cudaMemcpyDeviceToHost);
int *pInt1 = (int *)malloc((hst[0].m)*sizeof(int)) ;
int *pInt2 = (int *)malloc((hst[1].m)*sizeof(int)) ;
cudaMemcpy(pInt1, hst[0].a, (hst[0].m)*sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(pInt2, hst[1].a, (hst[1].m)*sizeof(int), cudaMemcpyDeviceToHost);
printf("%d\t%d\t%d\n",hst[0].n,hst[0].m, pInt1[0]);
printf("%d\t%d\t%d\n",hst[1].n,hst[1].m, pInt2[0]);
free(pInt1);
free(pInt2);
return 0;
}
代码将发出有关“检测到Cuda API错误:cudaMemcpy返回(0xb)”的警告
我看到了类似的问题:copy data which is allocated in device from device to host 但是似乎无法解决我的问题。
谢谢。
答案 0 :(得分:1)
好吧,我以一种愚蠢的方式(-.- !!)解决了这个问题。
当从内核函数返回时,我计算在主机和设备中必须分配多少空间,而cudaMalloc又是一个大空间。接下来,在名为 ythread 的其他内核函数中,将 Heap 中的数据复制到大空间中。
typedef struct { int n, m; int *a; } myst;
__global__ void xthread(myst *st) {
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
myst *mst = &st[idx];
mst->n = idx;
mst->m = idx + 1;
mst->a = (int *) malloc((mst->m) * sizeof(int));
for (int i = 0; i < mst->m; i++) {
mst->a[i] = idx + 900 + i * 10;
}
}
__global__ void ythread(myst *st, int *total_a) {
unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;
myst *mst = &st[idx];
int offset=0;
for(int i=0; i<idx; i++) {
offset += st[i].m;
}
for(int i=0; i<mst->m; i++) {
total_a[offset+i] = mst->a[i];
}
}
int main(int argc,char **argv) {
dim3 dimGrid(1);
dim3 dimBlock(2);
myst *mst = NULL;
cudaMalloc((void**)&mst, dimBlock.x * sizeof(myst));
xthread<<<dimGrid, dimBlock>>>(mst);
cudaDeviceSynchronize();
myst *hst = (myst *)malloc(dimBlock.x * sizeof(myst));
cudaMemcpy(hst, mst, dimBlock.x*sizeof(myst),cudaMemcpyDeviceToHost);
int t_size = 0;
for(int i=0; i<dimBlock.x; i++) {
t_size += hst[i].m;
}
printf("t_size:%d\n", t_size);
int * t_a_h = (int *)malloc(t_size*sizeof(int));
int * t_a_d = NULL;
cudaMalloc((void**)&t_a_d, t_size*sizeof(int));
ythread<<<dimGrid, dimBlock>>>(mst, t_a_d);
cudaDeviceSynchronize();
cudaMemcpy(t_a_h, t_a_d, t_size*sizeof(int),cudaMemcpyDeviceToHost);
for(int i=0; i<t_size; i++) {
printf("t_a_h[%d]:%d\n", i, t_a_h[i]);
}
free(t_a_h);
cudaFree(mst);
cudaFree(t_a_d);
return 0;
}
嗯,可以,但是我认为有更好的方法来解决这个问题。