附加Python的内存效率.txt

时间:2018-09-12 10:55:26

标签: python csv memory-management append

我已经在Python中创建了一个.txt文件目录列表,然后编写了一个函数来组合这些目录。

def combine_directory_txt(FilePaths):
    """
    This function will combine all files in a directory by importing each,
    and appending them to a single output. It only works for csv's (.txt) with
    a delimeter of "|"
    """
    Output = pd.DataFrame() # Dataframe which will store the final table
    Increment = 0
    Total = len(FilePaths)

    # Import each file and join them together
    for file in FilePaths:
        Increment += 1
        Import = pd.read_csv(file, sep = '|', error_bad_lines = False,
                                   low_memory = False, encoding='mbcs' )
        Output = Output.append(Import)
        print (Increment, " of ", Total, " joined")
        del Import
    return Output

这正常工作,除非我的PC遇到MemoryErrors。有没有更有效的方法可以做到这一点?我意识到我已经使用过“ low_memory = false”,该过程每月重复一次,所以我不知道列将是什么样,并且由于所有dtype警告,我的代码很早就失败了。这是正确的方法吗?我应该编写代码来弄清楚什么是dtype,然后将它们分配给它们以减少内存吗?

2 个答案:

答案 0 :(得分:1)

您的方法是将每个CSV文件读入内存,并将它们全部合并并返回结果数据帧。相反,您应该一次处理一个CSV文件,每次将结果写入output.csv文件中。

以下脚本显示了如何完成此操作。它添加了用于输出的文件名。假定运行中的所有文件共享相同的格式,并且每个文件都具有相同的头。标头只写入一次CSV输出文件,然后在读取时跳过。

import csv

def combine_directory_txt(file_paths, output_filename):
    # Get the header from the first CSV file passed
    with open(file_paths[0], "rb") as f_input:
        header = next(csv.reader(f_input, delimiter="|"))

    with open(output_filename, "wb") as f_output:
        csv_output = csv.writer(f_output, delimiter="|")
        csv_output.writerow(header)     # Write the header once

        for file_name in file_paths:
            with open(file_name, "rb") as f_input:
                csv_input = csv.reader(f_input, delimiter="|")
                next(csv_input)     # Skip header
                csv_output.writerows(csv_input)

combine_directory_txt(["mbcs_1.txt", "mbcs_2.txt"], "output.csv")

使用此方法,将大大减少内存需求。

答案 1 :(得分:0)

注意:未经测试。使用风险自负。

主要思想是读取数据块(行数),并将chunksize参数传递给read_csv,将数据附加到文件中。出于相同目的,可以选择将此参数传递给to_csv。尽管我没有分析此代码,但通常来说,分块读取和分块写入可以提高IO性能,尤其是对于大文件。

def combine_directory_txt(file_paths, output_filename, chunksize):
    """Merge collection of files.
    :param file_paths: Collection of paths of files to merge.
    :param output_filename: Path of output file (i.e., merged file).
    :param chunksize: Number of lines to read in at one time.    
    """
    with open(output_filename, "wb") as outfile:
        chunk_transfer(file_paths[0], outfile, chunksize, append=False)
        for path in file_paths[1:]:
            chunk_transfer(path, outfile, chunksize, append=True)

def chunck_transfer(path, outfile, chunksize, append, include_index=False):
    """Transfer file at path to outfile in chunks.
    :param path: Path of file to transfer.
    :param outfile: File handler for output file.
    :param chunksize: Number of lines to read at a time.
    :param append: Whether to append to file or write new file.
    :param include_index: Whether to include index of dataframe.
    """

    with open(path, "rb") as infile:
        df = pd.read_csv(infile, 
                         sep='|', 
                         error_bad_lines=False,
#                          low_memory=False,
                         encoding='mbcs',
                         chunksize=chunksize)

        if append:
            include_header = False
            mode = 'a'
        else:
            include_header = True
            mode = 'w'

        # Possible to pass chunksize as an argument to to_csv
        df.to_csv(outfile, mode=mode, header=include_header, index=include_index)