如何在Android应用中使用TensorflowInferenceInterface

时间:2018-09-12 04:49:10

标签: java android python tensorflow tensorflow-estimator

我正在Android应用中使用经过训练的模型(冻结图),该模型利用了Tensorflow的预制估算器虹膜示例,如以下链接所示:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/iris.py

我已经修改了iris.py以适应我的需要,并添加了一些语句来冻结图形,以便将.pb文件放入Android应用程序的资产文件夹中。

要在我的Android应用程序中使用Tensorflow,我已将以下行添加到build.gradle(模块:应用程序)文件中(依赖项块中的最后一条语句)。

dependencies {
    implementation fileTree(dir: 'libs', include: ['*.jar'])
    implementation 'com.android.support:appcompat-v7:27.1.1'
    implementation 'com.android.support.constraint:constraint-layout:1.1.2'
    implementation 'no.nordicsemi.android.support.v18:scanner:1.0.0'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'com.android.support.test:runner:1.0.2'
    androidTestImplementation 'com.android.support.test.espresso:espresso- 
    core:3.0.2'
    implementation 'org.tensorflow:tensorflow-android:+'
}

在放置冻结图之后,我正在通过执行以下语句来测试Tensorflow是否在运行我的应用程序:

    //testing tensorflow feature
    TensorFlowInferenceInterface tfInterface = new 
    TensorFlowInferenceInterface(
            getAssets(), "estimator_frozen_graph.pb");
    Graph graph = tfInterface.graph();
    Toast.makeText(ScanActivity.this, "Tensorflow Graph Init Success", 
    Toast.LENGTH_SHORT).show();

    int[] inputValues = {1, 1, 121, 800, 300};
    long rowDim = 1;
    long columnDim = 5;

    tfInterface.feed("dnn/input_from_feature_columns/input_layer/concat:0",
            inputValues, rowDim, columnDim);
    String[] outputNames = {"dnn/logits/BiasAdd:0"};
    boolean logstats = false;
    tfInterface.run(outputNames, logstats);
    float[] outputs = new float[6];
    tfInterface.fetch("dnn/logits/BiasAdd:0", outputs);
    for(int i = 0; i<= outputs.length; i++)
    {
        System.out.println(outputs[i]);
    }

程序到达该行时:

tfInterface.run(outputNames, logstats);

以下错误信息出现在Android Studio的日志中:

Caused by: java.lang.IllegalArgumentException: No OpKernel was registered to support Op 'Iterator' with these attrs.  Registered devices: [CPU], Registered kernels:
  <no registered kernels>

[[Node: Iterator = Iterator[container="", output_shapes=[[?], [?], [?], [?], [?], [?]], output_types=[DT_INT64, DT_INT64, DT_INT64, DT_INT64, DT_INT64, DT_INT64], shared_name=""]()]]
    at org.tensorflow.Session.run(Native Method)

我一直在寻找类似的问题,但似乎找不到解决该问题的可行方法。

请告诉我是否需要添加任何信息以简化此处获得帮助的过程。预先感谢。

1 个答案:

答案 0 :(得分:0)

我已经解决了自己的问题。事实证明,我不了解使用Tensorflow正确冻结模型的概念。 这个问题的简短答案是:

  1. 遵循适当的步骤,通过使用FrozenGraph.py冻结由模型生成的图形(在本例中为DNN分类器)。
  2. 将冻结的protobuf文件包括在Android项目“ assets”文件夹中。
  3. 在此处阅读有关在Android App中实施Tensorflow的指南: http://aqibsaeed.github.io/2017-05-02-deploying-tensorflow-model-andorid-device-human-activity-recognition/