我正在开始ML之旅,并且在此编码练习中遇到了麻烦 这是我的代码
[CustomerId]
因此,当import numpy as np
import pandas as pd
import scipy.optimize as op
# Read the data and give it labels
data = pd.read_csv('ex2data2.txt', header=None, name['Test1', 'Test2', 'Accepted'])
# Separate the features to make it fit into the mapFeature function
X1 = data['Test1'].values.T
X2 = data['Test2'].values.T
# This function makes more features (degree)
def mapFeature(x1, x2):
degree = 6
out = np.ones((x1.shape[0], sum(range(degree + 2))))
curr_column = 1
for i in range(1, degree + 1):
for j in range(i+1):
out[:,curr_column] = np.power(x1, i-j) * np.power(x2, j)
curr_column += 1
return out
# Separate the data into training and target, also initialize theta
X = mapFeature(X1, X2)
y = np.matrix(data['Accepted'].values).T
m, n = X.shape
cols = X.shape[1]
theta = np.matrix(np.zeros(cols))
#Initialize the learningRate(sigma)
learningRate = 1
# Define the Sigmoid Function (Output between 0 and 1)
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def cost(theta, X, y, learningRate):
# This is require to make the optimize function work
theta = theta.reshape(-1, 1)
error = sigmoid(X @ theta)
first = np.multiply(-y, np.log(error))
second = np.multiply(1 - y, np.log(1 - error))
j = np.sum((first - second)) / m + (learningRate * np.sum(np.power(theta, 2)) / 2 * m)
return j
# Define the gradient of the cost function
def gradient(theta, X, y, learningRate):
# This is require to make the optimize function work
theta = theta.reshape(-1, 1)
error = sigmoid(X @ theta)
grad = (X.T @ (error - y)) / m + ((learningRate * theta) / m)
grad_no = (X.T @ (error - y)) / m
grad[0] = grad_no[0]
return grad
Result = op.minimize(fun=cost, x0=theta, args=(X, y, learningRate), method='TNC', jac=gradient)
opt_theta = np.matrix(Result.x)
def predict(theta, X):
sigValue = sigmoid(X @ theta.T)
p = sigValue >= 0.5
return p
p = predict(opt_theta, X)
print('Train Accuracy: {:f}'.format(np.mean(p == y) * 100))
时,精度应该在learningRate = 1
左右,但是我得到的是83,05%
,而当80.5%
时,精度应该是{{1} },但我得到learningRate = 0
所以问题是我在做什么错?为什么我的准确性低于问题的默认答案?
希望有人可以指引我正确的方向。谢谢!
P.D:这是数据集,也许可以帮忙
答案 0 :(得分:1)
大家好,我找到了使它变得更好的方法! 这是代码
import numpy as np
import pandas as pd
import scipy.optimize as op
from sklearn.preprocessing import PolynomialFeatures
# Read the data and give it labels
data = pd.read_csv('ex2data2.txt', header=None, names=['Test1', 'Test2', 'Accepted'])
# Separate the data into training and target
X = (data.iloc[:, 0:2]).values
y = (data.iloc[:, 2:3]).values
# Modify the features to a certain degree (Polynomial)
poly = PolynomialFeatures(6)
m = y.size
XX = poly.fit_transform(data.iloc[:, 0:2].values)
# Initialize Theta
theta = np.zeros(XX.shape[1])
# Define the Sigmoid Function (Output between 0 and 1)
def sigmoid(z):
return(1 / (1 + np.exp(-z)))
# Define the Regularized cost function
def costFunctionReg(theta, reg, *args):
# This is require to make the optimize function work
h = sigmoid(XX @ theta)
first = np.log(h).T @ - y
second = np.log(1 - h).T @ (1 - y)
J = (1 / m) * (first - second) + (reg / (2 * m)) * np.sum(np.square(theta[1:]))
return J
# Define the Regularized gradient function
def gradientReg(theta, reg, *args):
theta = theta.reshape(-1, 1)
h = sigmoid(XX @ theta)
grad = (1 / m) * (XX.T @ (h - y)) + (reg / m) * np.r_[[[0]], theta[1:]]
return grad.flatten()
# Define the predict Function
def predict(theta, X):
sigValue = sigmoid(X @ theta.T)
p = sigValue >= 0.5
return p
# A loop to test between different values for sigma (reg parameter)
for i, Sigma in enumerate([0, 1, 100]):
# Optimize costFunctionReg
res2 = op.minimize(costFunctionReg, theta, args=(Sigma, XX, y), method=None, jac=gradientReg)
# Get the accuracy of the model
accuracy = 100 * sum(predict(res2.x, XX) == y.ravel()) / y.size
# Get the Error between different weights
error1 = costFunctionReg(res2.x, Sigma, XX, y)
# print the accuracy and error
print('Train accuracy {}% with Lambda = {}'.format(np.round(accuracy, decimals=4), Sigma))
print(error1)
感谢您的所有帮助!
答案 1 :(得分:0)
尝试一下:
# import library
import pandas as pd
import numpy as np
dataset = pd.read_csv('ex2data2.csv',names = ['Test #1','Test #2','Accepted'])
# splitting to x and y variables for features and target variable
x = dataset.iloc[:,:-1].values
y = dataset.iloc[:,-1].values
print('x[0] ={}, y[0] ={}'.format(x[0],y[0]))
m, n = x.shape
print('#{} Number of training samples, #{} features per sample'.format(m,n))
# import library FeatureMapping
from sklearn.preprocessing import PolynomialFeatures
# We also add one column of ones to interpret theta 0 (x with power of 0 = 1) by
include_bias as True
pf = PolynomialFeatures(degree = 6, include_bias = True)
x_poly = pf.fit_transform(x)
pd.DataFrame(x_poly).head(5)
m,n = x_poly.shape
# define theta as zero
theta = np.zeros(n)
# define hyperparameter λ
lambda_ = 1
# reshape (-1,1) because we just have one feature in y column
y = y.reshape(-1,1)
def sigmoid(z):
return 1/(1+np.exp(-z))
def lr_hypothesis(x,theta):
return np.dot(x,theta)
def compute_cost(theta,x,y,lambda_):
theta = theta.reshape(n,1)
infunc1 = -y*(np.log(sigmoid(lr_hypothesis(x,theta)))) - ((1-y)*(np.log(1 - sigmoid(lr_hypothesis(x,theta)))))
infunc2 = (lambda_*np.sum(theta[1:]**2))/(2*m)
j = np.sum(infunc1)/m+ infunc2
return j
# gradient[0] correspond to gradient for theta(0)
# gradient[1:] correspond to gradient for theta(j) j>0
def compute_gradient(theta,x,y,lambda_):
gradient = np.zeros(n).reshape(n,)
theta = theta.reshape(n,1)
infunc1 = sigmoid(lr_hypothesis(x,theta))-y
gradient_in = np.dot(x.transpose(),infunc1)/m
gradient[0] = gradient_in[0,0] # theta(0)
gradient[1:] = gradient_in[1:,0]+(lambda_*theta[1:,]/m).reshape(n-1,) # theta(j) ; j>0
gradient = gradient.flatten()
return gradient
您现在无需优化即可测试成本和梯度。下面的代码将优化模型:
# hyperparameters
m,n = x_poly.shape
# define theta as zero
theta = np.zeros(n)
# define hyperparameter λ
lambda_array = [0, 1, 10, 100]
import scipy.optimize as opt
for i in range(0,len(lambda_array)):
# Train
print('======================================== Iteration {} ===================================='.format(i))
optimized = opt.minimize(fun = compute_cost, x0 = theta, args = (x_poly, y,lambda_array[i]),
method = 'TNC', jac = compute_gradient)
new_theta = optimized.x
# Prediction
y_pred_train = predictor(x_poly,new_theta)
cm_train = confusion_matrix(y,y_pred_train)
t_train,f_train,acc_train = acc(cm_train)
print('With lambda = {}, {} correct, {} wrong ==========> accuracy = {}%'
.format(lambda_array[i],t_train,f_train,acc_train*100))
现在您应该看到类似以下的输出:
=== Iteration 0 === With lambda = 0, 104 correct, 14 wrong ==========> accuracy = 88.13559322033898%
=== Iteration 1 === With lambda = 1, 98 correct, 20 wrong ==========> accuracy = 83.05084745762711%
=== Iteration 2 === With lambda = 10, 88 correct, 30 wrong ==========> accuracy = 74.57627118644068%
=== Iteration 3 === With lambda = 100, 72 correct, 46 wrong ==========> accuracy = 61.016949152542374%