我对创建适合我的keras模型的回调很感兴趣。更详细地讲,我想在每个纪元结束时从机器人电报中接收带有val_acc的消息。我知道您可以在classifier.fit()中添加callback_list作为参数,但是许多回调是由keras预先构建的,我不知道添加自定义回调是很热门。
谢谢!
答案 0 :(得分:3)
例如,我为我的自定义回调提供F1指标。它在每个时间段的末尾不是按批次计算F1,而是针对所有传递的列车数据(以及验证)进行计算。可以轻松使用其他所有指标进行自定义
class F1History(tf.keras.callbacks.Callback):
def __init__(self, train, validation=None):
super(F1History, self).__init__()
self.validation = validation
self.train = train
def on_epoch_end(self, epoch, logs={}):
logs['F1_score_train'] = float('-inf')
X_train, y_train = self.train[0], self.train[1]
y_pred = (self.model.predict(X_train).ravel()>0.5)+0
score = f1_score(y_train, y_pred)
if (self.validation):
logs['F1_score_val'] = float('-inf')
X_valid, y_valid = self.validation[0], self.validation[1]
y_val_pred = (self.model.predict(X_valid).ravel()>0.5)+0
val_score = f1_score(y_valid, y_val_pred)
logs['F1_score_train'] = np.round(score, 5)
logs['F1_score_val'] = np.round(val_score, 5)
else:
logs['F1_score_train'] = np.round(score, 5)
适合:
es = EarlyStopping(patience=3, verbose=1, min_delta=0.001, monitor='F1_score_val', mode='max', restore_best_weights=True)
model.fit(x_train,y_train, epochs=10,
callbacks=[F1History(train=(x_train,y_train),validation=(x_val,y_val)),es])
答案 1 :(得分:1)
以下是我如何向回调添加验证准确性的示例:
class AccuracyHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.acc = []
def on_epoch_end(self, batch, logs={}):
self.acc.append(logs.get('val_acc'))
history = AccuracyHistory()
model.fit(x, y,
...
callbacks=[history])