我有两个元组列表
[[1,3000],[2,5000],[3,7000],[4,10000]]
[[1,2000],[2,3000],[3,4000],[4,5000]]
总和为10000。这里我们有[2,5000],[4,5000]和[3,7000],[2,3000],因此输出应为 [2,4] 和 [3,2]
[[1,2000],[2,4000],[3,6000]]
[[1,2000]]
总和为7000。在这里,由于我没有总和为7000的组合,因此考虑所有可能的组合4000(2000 + 2000),6000(4000 + 2000)和8000(6000 + 2000),然后考虑下一个期望的总和中的最小数字为6000。对于6000,我的输出应该是[2,4000]和[1,2000],它是 [2,1]
这是我的代码
import itertools
def optimalUtilization(maximumOperatingTravelDistance,
forwardShippingRouteList, returnShippingRouteList):
result=[]
t1=[]
t2=[]
for miles in forwardShippingRouteList:
t1.append(miles[1])
for miles in returnShippingRouteList:
t2.append(miles[1])
result.append(t1)
result.append(t2)
total_sum=set()
for element in list(itertools.product(*result)):
if sum(element)<=maximumOperatingTravelDistance:
total_sum.add(sum(element))
total_sum=sorted(total_sum,reverse=True)
return optimalUtilizationhelper(total_sum[0],
forwardShippingRouteList, returnShippingRouteList)
def optimalUtilizationhelper(maximumOperatingTravelDistance,
forwardShippingRouteList, returnShippingRouteList):
dist_dict={}
for carid,miles in forwardShippingRouteList:
dist_dict.update({miles:carid})
result=[]
for carid,miles in returnShippingRouteList:
if (maximumOperatingTravelDistance-miles) in dist_dict:
result.append(list((dist_dict[maximumOperatingTravelDistance-miles],carid)))
return result
是否有更好的pythonic方法来做到这一点?
驱动程序代码
print(optimalUtilization(20,
[[1,8],[2,7],[3,14]],
[[1,5],[2,10],[3,14]]))
答案 0 :(得分:1)
以下是组合数量的更简洁明了的描述:
from itertools import product
def optimalUtilization(n, l1, l2):
# all (index1, index2, sum) triplets where sum is at most n
res = [(a[0], b[0], a[1]+b[1]) for a, b in product(l1, l2) if a[1]+b[1] <= n]
m = max(res, key=lambda x: x[2])[2] # max sum <= n
return [x[:2] for x in res if x[2] == m]
>>> optimalUtilization(20, [[1,8],[2,7],[3,14]], [[1,5],[2,10],[3,14]])
[(3, 1)]
它是更具可读性还是更Python化,无疑值得商::)
更新:不再需要排序和分组。