如何在C ++中实现分配器?

时间:2018-09-10 10:01:11

标签: c++ memory-management

我试图用C ++更好地了解person | number of fruits sold | ranking A | 5 | 2 B | 6 | 1 C | 2 | 4 D | 5 | 2 E | 3 | 3 ,遇到this question,在我看来实际上只有一个容器通常使用的分配器类(例如std::allocator )我的问题是如何实现这种分配器?就像是定期重新分配的堆栈吗?如果没有,实际上如何实现?

2 个答案:

答案 0 :(得分:6)

默认分配器为std::allocator,并且在需要时仅使用::operator new,所以没有什么特别的。这与您为每个所需的对象自己进行newdelete相同。您可以在标准中的[default.allocator]下阅读有关此内容的更多信息。

分配器的“接口”(实际上只是一组要求,在模板实例化期间强制执行)是围绕此过程的包装程序,允许采用替代的内存供应方法。

例如,您可能提供的替代分配器可以实现memory pool或其他针对您的需求的分配器,从而减少诚实到善良的动态分配。

标准容器以及它们的元素类型都有一个分配器类型作为模板参数(您通常不会注意到这一点!),这就是您选择用于该容器的替代实现的方式。

在这些情况下,通常将预先分配一些大内存,然后在适当的时候分配一些小内存。从这个意义上讲,这样的实现可以看作是“堆中的堆”,但是实际上根本没有理由需要给它提供堆语义。它只需要遵守概念Allocator的要求。

Josuttis先生在http://www.josuttis.com/cppcode/allocator.html上举了一个(无聊的)例子;我在这里复制它:

/* The following code example is taken from the book
 * "The C++ Standard Library - A Tutorial and Reference"
 * by Nicolai M. Josuttis, Addison-Wesley, 1999
 *
 * (C) Copyright Nicolai M. Josuttis 1999.
 * Permission to copy, use, modify, sell and distribute this software
 * is granted provided this copyright notice appears in all copies.
 * This software is provided "as is" without express or implied
 * warranty, and with no claim as to its suitability for any purpose.
 */
#include <limits>
#include <iostream>

namespace MyLib {
   template <class T>
   class MyAlloc {
     public:
       // type definitions
       typedef T        value_type;
       typedef T*       pointer;
       typedef const T* const_pointer;
       typedef T&       reference;
       typedef const T& const_reference;
       typedef std::size_t    size_type;
       typedef std::ptrdiff_t difference_type;

       // rebind allocator to type U
       template <class U>
       struct rebind {
           typedef MyAlloc<U> other;
       };

       // return address of values
       pointer address (reference value) const {
           return &value;
       }
       const_pointer address (const_reference value) const {
           return &value;
       }

       /* constructors and destructor
        * - nothing to do because the allocator has no state
        */
       MyAlloc() throw() {
       }
       MyAlloc(const MyAlloc&) throw() {
       }
       template <class U>
         MyAlloc (const MyAlloc<U>&) throw() {
       }
       ~MyAlloc() throw() {
       }

       // return maximum number of elements that can be allocated
       size_type max_size () const throw() {
           return std::numeric_limits<std::size_t>::max() / sizeof(T);
       }

       // allocate but don't initialize num elements of type T
       pointer allocate (size_type num, const void* = 0) {
           // print message and allocate memory with global new
           std::cerr << "allocate " << num << " element(s)"
                     << " of size " << sizeof(T) << std::endl;
           pointer ret = (pointer)(::operator new(num*sizeof(T)));
           std::cerr << " allocated at: " << (void*)ret << std::endl;
           return ret;
       }

       // initialize elements of allocated storage p with value value
       void construct (pointer p, const T& value) {
           // initialize memory with placement new
           new((void*)p)T(value);
       }

       // destroy elements of initialized storage p
       void destroy (pointer p) {
           // destroy objects by calling their destructor
           p->~T();
       }

       // deallocate storage p of deleted elements
       void deallocate (pointer p, size_type num) {
           // print message and deallocate memory with global delete
           std::cerr << "deallocate " << num << " element(s)"
                     << " of size " << sizeof(T)
                     << " at: " << (void*)p << std::endl;
           ::operator delete((void*)p);
       }
   };

   // return that all specializations of this allocator are interchangeable
   template <class T1, class T2>
   bool operator== (const MyAlloc<T1>&,
                    const MyAlloc<T2>&) throw() {
       return true;
   }
   template <class T1, class T2>
   bool operator!= (const MyAlloc<T1>&,
                    const MyAlloc<T2>&) throw() {
       return false;
   }
}

和用法:

#include <vector>
#include "myalloc.hpp"

int main()
{
    // create a vector, using MyAlloc<> as allocator
    std::vector<int,MyLib::MyAlloc<int> > v;

    // insert elements
    // - causes reallocations
    v.push_back(42);
    v.push_back(56);
    v.push_back(11);
    v.push_back(22);
    v.push_back(33);
    v.push_back(44);
}

答案 1 :(得分:0)

分配器只是提供一种分配内存,取消分配内存,构造对象并销毁它们的策略。

它们不提供重新分配内存的策略(增加先前分配的内存区域的大小)。因此,在所有容器中,如果必须增加内存:

  • 这两个容器都分配了一个新的内存块
  • 或像vector那样,分配一个更大的新内存区域,复制其中的旧元素,然后释放先前的内存区域。