X是一个多维数组,包含x_coordinates以及时间,初始温度和材料属性(所有独立变量)。 “ h”是传热系数,出于本练习的目的,我正尝试对其进行优化(暂时不考虑物理原理。)
这是我的温度函数的定义:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pickle
import scipy.optimize as opt
from scipy.special import erfc
def Temp_Function_JLT(X,ht):
# Work around the fact that only one independent variable can be passed to optimize.curve_fit
x,t,T0,q,alpha,rho,c,k = X
term_a = q/ht
term_b = erfc(x/np.sqrt(4*alpha*t))
term_c = np.exp(((ht*x)/(np.sqrt(alpha)*np.sqrt(k*rho*c)))+((ht**2)/(k*rho*c)))
term_d = erfc((ht*np.sqrt(t))/(np.sqrt(k*rho*c)) + (x/np.sqrt(4*alpha*t)))
Temperature = (term_a * (term_b - term_c * term_d)) + T0 - 273
return Temperature
该功能有效。我可以使用一些初始参数来运行它并获取合理的值。对于这个问题,更重要的是,如果我使用以下数据进行调用:
t = 1
x_test = np.linspace(0.004,0.02,5) # TC locations
time_test = range(1,180,30)
T0_test = 25 + 273
q_test = 20000
h_test = 10
我将获得一个numpy数组作为形状(1,)的解,它给出np.ndim为1的答案(在以下先前的问题中已经提到过:
Fitting a vector function with curve_fit in Scipy
Fitting a 2D Gaussian function using scipy.optimize.curve_fit - ValueError and minpack.error
当我调用opt.curve_fit()时出现问题。 indepth_temperatures是一个列表,其中包含每个测试的数组。我遍历它(遍历每个测试),然后根据以下代码对每一行执行拟合(每个时间步):
for i,test in enumerate(indepth_temperatures):
# Iterate over every row
for j,row in enumerate(test):
# Define tuple that contains all independent variables
X = (TC_depth,
times[i][j],
T0_temperatures[i] + 273,
20000,
pmma_alpha,
pmma_rho,
pmma_c,
pmma_k)
print(Temp_Function_JLT(X,h0))
print(row)
print('---')
# Call function to optimize curve fit on h
popt, pcov = opt.curve_fit(Temp_Function_JLT,X,row,h0)
print(popt)
对于第一次迭代,我得到以下结果:
[23.2034 23.2034 23.2034 23.2034 23.2034] # comes from print(Temp_Function_JLT(X,h0))
[23.937 22.619 22.59 24.884 21.987000000000002] # comes from print(row)
随后出现此错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-67-9c4545fd257b> in <module>()
22 print('---')
23 # Call function to optimize curve fit on h
---> 24 popt, pcov = opt.curve_fit(Temp_Function_JLT,X,row,h0)
25 print(popt)
~\AppData\Local\Continuum\anaconda2\envs\py36\lib\site-packages\scipy\optimize\minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
749 # Remove full_output from kwargs, otherwise we're passing it in twice.
750 return_full = kwargs.pop('full_output', False)
--> 751 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
752 popt, pcov, infodict, errmsg, ier = res
753 cost = np.sum(infodict['fvec'] ** 2)
~\AppData\Local\Continuum\anaconda2\envs\py36\lib\site-packages\scipy\optimize\minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
392 with _MINPACK_LOCK:
393 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 394 gtol, maxfev, epsfcn, factor, diag)
395 else:
396 if col_deriv:
error: Result from function call is not a proper array of floats.
我尝试从我的函数np.ravel(Temperature)或Temperature.flatten()中返回而没有运气。错误仍然存在,我不知道为什么会出现。如前所述,我已经检查了函数返回的尺寸,它是一维数组。
任何帮助将不胜感激!
更新:我意识到很难复制这段代码,所以这是一个简化的版本:
Temp_Function_JLT(X,h0):保持不变。
pmma_rho = 1200 # kg/m3
pmma_c = 1500 # J/kgK
pmma_k = 0.16 # W/mK
pmma_alpha = pmma_k/(pmma_rho*pmma_c)
x_test = np.linspace(0.004,0.02,5) # TC locations
t = 1
T0_test = 25 + 273
q_test = 20000
h_test = 10
X = (x_test,t,T0_test,q_test,pmma_alpha,pmma_rho,pmma_c,pmma_k)
y_data = [23.937 22.619 22.59 24.884 21.987000000000002]
opt.curve_fit(Temp_Function_JLT, X, y_data, h_test)
答案 0 :(得分:1)
我意识到我的代码出了什么问题。即使我的y_data(行)被定义为一维numpy数组,其数据类型还是对象。我还不明白为什么这是原因,但是通过使用np.astype(np.float)强制数据类型,opt.curve_fit起作用了。