我有什么:
list of company names : [bmw, tata, ferrari,...]
transmission: Manual or Automatic3.
car color: Red or White etc
model year: 2010 to 2014
Min Price & Max Price. --> Price range
我现在能做什么:如果我只有一个对象(即公司中的一个公司),那么我会做类似的事情:
query = {{transmission_type : transmission}, {color : car_color}, {year : model_year}, { $range: [ 0, "$PriceInINR", 25 ] } }
db.companies.cars.find(query)
但是这里首先有很多公司,然后每个公司都有汽车列表。
如何进行此类查询?
早期想法:我以为知道公司名称就可以分别查询每个公司。因此单独查找结果,然后将其推入数组。
还有其他建议,我该怎么做?
Mongo DB中公司集合的实际结构
{
"_id" : ObjectId("5b8ef8b78cc390cca71aa0e5"),
"company_location" : "USA",
"company_name" : "buick",
"__v" : 0,
"cars" : [
{
"_id" : ObjectId("5b8ef8b6d1a7c2156417de56"),
"model" : "ENCLAVE",
"year" : 2014,
"PriceInINR" : 2537993,
"trim" : "Leather FWD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "3.6L V6 DOHC 24V",
"color" : "Silver",
"transmission_type" : "Manual",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef8b6d1a7c2156417de5d"),
"model" : "LaCrosse",
"year" : 2011,
"PriceInINR" : 4677427,
"trim" : "CXL FWD",
"engine" : "SEDAN 4-DR",
"body" : "3.6L V6 DOHC 24V",
"color" : "Grey",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef8b7d1a7c2156417de8e"),
"model" : "ENCORE",
"year" : 2013,
"PriceInINR" : 4808616,
"trim" : "Leather FWD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "1.4L L4 DOHC 16V TURBO",
"color" : "Yellow",
"transmission_type" : "Manual",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef8b7d1a7c2156417dece"),
"model" : "LaCrosse",
"year" : 2011,
"PriceInINR" : 868875,
"trim" : "CXL FWD",
"engine" : "SEDAN 4-DR",
"body" : "2.4L L4 DOHC 16V",
"color" : "Grey",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef9c1f0412315aa07b65a"),
"model" : "VERANO",
"year" : 2013,
"PriceInINR" : 4380113,
"trim" : "Base",
"engine" : "SEDAN 4-DR",
"body" : "2.4L L4 DOHC 16V FFV",
"color" : "Metallic White",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
}
]}
{
"_id" : ObjectId("5b8ef8b78cc390cca71aa0e7"),
"company_location" : "USA",
"company_name" : "gmc",
"__v" : 0,
"cars" : [
{
"_id" : ObjectId("5b8ef8b6d1a7c2156417de57"),
"model" : "TERRAIN",
"year" : 2013,
"PriceInINR" : 3851710,
"trim" : "SLE2 FWD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "2.4L L4 DOHC 16V FFV",
"color" : "Yellow",
"transmission_type" : "Manual",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef8b6d1a7c2156417de5b"),
"model" : "YUKON",
"year" : 2015,
"PriceInINR" : 3129397,
"trim" : "SLE 2WD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "5.3L V8 OHV 16V",
"color" : "Silver",
"transmission_type" : "Manual",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef9c1f0412315aa07b659"),
"model" : "SIERRA 1500",
"year" : 2014,
"PriceInINR" : 3649025,
"trim" : "SLE Crew Cab 2WD",
"engine" : "CREW CAB PICKUP 4-DR",
"body" : "5.3L V8 OHV 16V",
"color" : "Metallic White",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef9c1f0412315aa07b666"),
"model" : "TERRAIN",
"year" : 2012,
"PriceInINR" : 1896832,
"trim" : "SLT1 FWD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "3.0L V6 DOHC 24V",
"color" : "Metallic White",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
},
{
"_id" : ObjectId("5b8ef9c1f0412315aa07b650"),
"model" : "ACADIA",
"year" : 2012,
"PriceInINR" : 2541355,
"trim" : "Denali AWD",
"engine" : "SPORT UTILITY 4-DR",
"body" : "3.6L V6 DOHC 24V",
"color" : "Metallic White",
"transmission_type" : "Automatic",
"dealer_id" : "5b8ee03ffe42df0d94de785d"
}
]
}
答案 0 :(得分:0)
您可以使用聚合。 $unwind将为每辆汽车输出一个文档。然后在您的示例中使用$match代替 find()。
filenames <- list.files(dataPath)
names <- substr(filenames,13,17)
CCLF1_width <- c(13,6,11,2,10,10,1,1,7,7,2,17,1,2,2,4,1,10,10,10,10,10,2,10,10,10,11,2,2,1,1,1)
CCLF2_width <- c(13,10,11,2,10,10,4,10,5,11,6,10,10,24,17,2,2,2,2,2)
CCLF3_width <- c(13,11,2,2,7,10,11,6,10,10,1)
CCLF4_width <- c(13,11,2,1,2,7,11,6,10,10,7,1)
CCLF5_width <- c(13,10,11,2,10,10,3,2,2,1,2,10,10,5,15,1,7,10,10,2,2,2,10,10,40,11,17,24,2,2,2,2,2,2,7,7,7,7,7,7,7,7,1)
CCLF6_width <- c(13,10,11,2,10,10,1,2,10,10,5,15,1,10,10,2,2,2,10,10,40,11,17,2)
CCLF7_width <- c(13,11,11,2,10,2,20,1,1,24,9,2,20,13,2,10,10,12,9)
CCLF8_width <- c(11,2,3,5,10,1,1,3,2,2,10,10,10,30,15,40,1,1)
CCLF9_width <- c(11,11,10,10,12)
CCLF0_width <- c(11,11)
for (i in length(filenames)){
assign(paste0(substr(filenames,13,17)), read_fwf(grepl("CCLF1",filenames),paste0(i,"_width")))
}