使用时启动内核时发生错误

时间:2018-09-07 22:22:19

标签: python ubuntu tensorflow keras

>         2018 01:55:54.597937: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
> instructions that this TensorFlow binary was not compiled to use: AVX2
> FMA
>     2018 01:55:54.716562: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful
> NUMA node read from SysFS had negative value (), but there must be
> at least one NUMA node, so returning NUMA node zero
>     2018 01:55:54.717353: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0
> with properties: 
>     name: GeForce 840M major: 5 minor: 0 memoryClockRate(GHz): 1.124
>     pciBusID: 0000:03:00.0
>     totalMemory: 3.95GiB freeMemory: 3.32GiB
>     2018 01:55:54.717375: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible
> gpu devices: 0
>     2018 01:55:58.548292: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device
> interconnect StreamExecutor with strength 1 edge matrix:
>     2018 01:55:58.548327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0 
>     2018 01:55:58.548333: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N 
>     2018 01:55:58.549052: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created
> TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
> 3033 MB memory) ‑> physical GPU (device: 0, name: GeForce 840M, pci
> bus id: 0000:03:00.0, compute capability: 5.0)
>     The X11 connection broke (error 1). Did the X11 server die?
>     2018 02:03:00.942213: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
> instructions that this TensorFlow binary was not compiled to use: AVX2
> FMA
>     2018 02:03:01.011004: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful
> NUMA node read from SysFS had negative value (), but there must be
> at least one NUMA node, so returning NUMA node zero
>     2018 02:03:01.011795: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0
> with properties: 
>     name: GeForce 840M major: 5 minor: 0 memoryClockRate(GHz): 1.124
>     pciBusID: 0000:03:00.0
>     totalMemory: 3.95GiB freeMemory: 3.25GiB
>     2018 02:03:01.011822: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible
> gpu devices: 0
>     2018 02:03:01.816586: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device
> interconnect StreamExecutor with strength 1 edge matrix:
>     2018 02:03:01.816632: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0 
>     2018 02:03:01.816640: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N 
>     2018 02:03:01.816883: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created
> TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
> 2964 MB memory) ‑> physical GPU (device: 0, name: GeForce 840M, pci
> bus id: 0000:03:00.0, compute capability: 5.0)
>     The X11 connection broke (error 1). Did the X11 server die?
>     2018 02:28:52.085086: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
> instructions that this TensorFlow binary was not compiled to use: AVX2
> FMA
>     2018 02:28:52.155323: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful
> NUMA node read from SysFS had negative value (), but there must be
> at least one NUMA node, so returning NUMA node zero
>     2018 02:28:52.156011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0
> with properties: 
>     name: GeForce 840M major: 5 minor: 0 memoryClockRate(GHz): 1.124
>     pciBusID: 0000:03:00.0
>     totalMemory: 3.95GiB freeMemory: 3.22GiB
>     2018 02:28:52.156029: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible
> gpu devices: 0
>     2018 02:28:52.932596: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device
> interconnect StreamExecutor with strength 1 edge matrix:
>     2018 02:28:52.932639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0 
>     2018 02:28:52.932650: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N 
>     2018 02:28:52.932903: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created
  

TensorFlow设备(/ job:localhost /副本:0 /任务:0 /设备:GPU:0与   2930 MB内存)->物理GPU(设备:0,名称:GeForce 840M,pci   总线ID:0000:03:00.0,计算能力:5.0)       X11连接断开(错误1)。 X11服务器死了吗?       2018 02:37:38.565823:I tensorflow / core / platform / cpu_feature_guard.cc:141]您的CPU支持   TensorFlow二进制文件未编译使用的指令:AVX2   FMA       2018 02:37:38.639277:我tensorflow / stream_executor / cuda / cuda_gpu_executor.cc:897]成功   从SysFS读取的NUMA节点具有负值(),但必须存在   至少一个NUMA节点,因此返回NUMA节点为零       2018 02:37:38.639944:I tensorflow / core / common_runtime / gpu / gpu_device.cc:1405]找到设备0   具有属性:       名称:GeForce 840M主要:5次要:0 memoryClockRate(GHz):1.124       pciBusID:0000:03:00.0       totalMemory:3.95GiB空闲内存:3.14GiB       2018 02:37:38.639960:I tensorflow / core / common_runtime / gpu / gpu_device.cc:1484]添加可见   gpu设备:0       2018 02:37:39.383392:我tensorflow / core / common_runtime / gpu / gpu_device.cc:965]设备   将StreamExecutor与强度1边缘矩阵互连:       2018 02:37:39.383445:我tensorflow / core / common_runtime / gpu / gpu_device.cc:971] 0       2018 02:37:39.383456:I tensorflow / core / common_runtime / gpu / gpu_device.cc:984] 0:N       2018 02:37:39.383700:我创建了tensorflow / core / common_runtime / gpu / gpu_device.cc:1097]   TensorFlow设备(/ job:localhost /副本:0 /任务:0 /设备:GPU:0与   2856 MB内存)->物理GPU(设备:0,名称:GeForce 840M,pci   总线ID:0000:03:00.0,计算能力:5.0)       X11连接断开(错误1)。 X11服务器死了吗?

我正在尝试使用keras训练模型,并且在上一个纪元之后,我在iPython控制台上收到此错误,然后我应该重新启动内核,但仍然无法正常工作 当我在终端中尝试相同的文件时,它工作正常。 我使用anaconda和virtualEnv,并且使用带有GPU支持的tensorflow

0 个答案:

没有答案