我有10组数据点,并且我试图将平均值添加到要在绘图上显示的每个组上(例如,通过不同的符号,例如大三角形或星形或类似形状)。 这是一个可复制的示例
library(ggplot2)
library(reshape2)
set.seed(1234)
x <- matrix(rnorm(100),10,10)
varnames <- paste("var", seq(1,10))
df <- data.frame(x)
colnames(df) <- varnames
melt(df)
ggplot(data = melt(df)) + geom_point(mapping = aes(x = variable, y = value))
mymeans <- colMeans(df)
基本上,我现在想将mymeans
中的值绘制在它们各自的变量位置,有人会知道如何快速执行此操作吗?
答案 0 :(得分:1)
或者我们可以使用stat_summary
ggplot(data = reshape2::melt(df), aes(x = variable, y = value)) +
geom_point() +
stat_summary(
geom = "point",
fun.y = "mean",
col = "black",
size = 3,
shape = 24,
fill = "red"
)
有关可能的形状的概述,请参见:www.cookbook-r.com
答案 1 :(得分:1)
更新了代码以反映 tidyverse 中先前评论的变化。
由于 tidyverse 更新了其语法,以下是 dplyr 和 ggplot2 的更新版本。谢谢@Vincent Bonhomme 和@markus。
为了重现性,我将复制他们的例子。
library(tidyverse)
# Dataset Generation
set.seed(1234)
df <- replicate(10, rnorm(10)) %>%
as_data_frame() %>%
pivot_longer(cols = everything(), names_to = "variable", values_to = "value") %>% # ** Change here
mutate(group = as.factor(rep(1:5, 20)))
#Option 1: Use stat_summary() for a cleaner version (@Vincent Bonhomme)
ggplot(df, aes(x = variable, y = value)) +
geom_point() +
stat_summary(
fun = "mean", #argument updated in new version.
geom = "point",
col = "black",
size = 3,
shape = 24,
fill = "red"
) +
ggtitle("Example")
#Option 2 -- Creating a means dataset (@ markus)
df_means <- df %>% group_by(variable) %>% summarise(value=mean(value))
ggplot(data = df) +
aes(x = variable, y = value) +
geom_point() +
geom_point(data=df_means,
col="red",
size = 3,
shape = 24,
fill = "red") +
ggtitle("Example")
两者都创建相同的图表
这里是使用的版本
dplyr * 1.0.3
ggplot2 * 3.3.3
答案 2 :(得分:0)
您可以将另一个nested_json = {
"Invalids": [
...
]
}
def get_names_and_numbers(json_data):
"""
Return names and numbers in json_data.
"""
names_list = []
numbers_list= []
Invalids = nested_json['Invalids']
if Invalids: # *note that Invalids is a list an this referers to its lenght*
names_list.append(Invalids[1]['InputRequest']['name'])
numbers_list.append(Invalids[1]['InputRequest']['number'])
return names_list, numbers_list
else:
return None, None
names, numbers = get_names_and_numbers(nested_json)
传递给另一个geom_point
:
尝试以下操作:
data.frame
我什至不满足你的要求?
更紧凑/更现代/更完整的方式是:
df_means <- melt(summarise_all(df, mean))
ggplot(data = melt(df)) +
geom_point(mapping = aes(x = variable, y = value)) +
geom_point(data=df_means, mapping=aes(x = variable, y = value), col="red")
答案 3 :(得分:0)
我发现使用所有不同的数据而不是使用两个不同的帧会更加干净。
library(ggplot2)
library(tidyr)
library(dplyr)
set.seed(1234)
x <- matrix(rnorm(100),10,10)
varnames <- paste("var", seq(1,10))
df <- data.frame(x)
colnames(df) <- varnames
melt_data = df %>% gather
mymeans = melt_data %>% group_by(key) %>% summarize(value = mean(value))
mymeans$type = 'mean'
melt_data$type = 'points'
ggplot(data = bind_rows(melt_data, mymeans)) +
geom_point(mapping = aes(x = key, y = value, color=type))