我正在使用多处理python库在机器学习问题中并行运行特征选择。此函数接受熊猫数据框作为输入并返回一些数字。
当我使用mp.pool.map()
执行此功能时,一切运行顺利。但是,如果我将其替换为mp.pool.ThreadPool.map()
,它将失败,并显示以下错误:
AssertionError: Number of manager items must equal union of block items
# manager items: 15, # tot_items: 20
。
奇怪的是,我一直在运行ThreadPool
代码,直到昨天。然后,我尝试重新运行它并开始遇到这些错误。我需要ThreadPool
,因为这是与IO绑定的工作,并且与pool
相比,它的运行速度要快得多。
编辑: 代码是这样的(python 2.7):
import multiprocessing as mp
import pandas as pd (version 0.22.0)
def main_functionality(df, params):
df = df[params['feature']]
#Run 5-fold cross-validation
data_df = pd.DataFrame(....)
pred_df = pred_df.append(data_df)
return statistics from pred_df
def a_function(df_init, feature, params_init):
params = dict(params_init)
df = df_init.copy()
params['feature'] = feature
try:
results = main_functionality(df, params)
except:
results = (0,0,0)
return results
def b_function(df, features):
pool = mp.pool.ThreadPool(4)
params = {...}
results = pool.map(a_function,(df, feature, params) for f in features))
results_df = pd.DataFrame(results)
results_df.to_csv(...)
if __name__ == '__main__':
df = read.csv(...) # A big CSV file (i.e. few GBs)
features = [i for i in df.columns if i ....]
b_function(df, features)