两个数字的和为20。如果每个数字加到其平方根,则两个和的乘积为155.55。使用割线法将两个数字的值近似在10 ^(-4)之内。
答案 0 :(得分:0)
基于http://campus.murraystate.edu/academic/faculty/wlyle/420/Secant.htm
#inital guess
x1 = 10
x2 = 50
Epsilon = 1e-4
#given function
def func(x):
return abs(x)**0.5 * (abs(x)+20)**0.5 - 155.55
y1 = func(x1)
y2 = func(x2)
#loop max 20 times
for i in range(20):
ans = x2 - y2 * (x2-x1)/(y2-y1)
y3 = func(ans)
print("Try:{}\tx1:{:0.3f}\tx2:{:0.3f}\ty3:{:0.3f}".format(i,x1, x2, y3))
if (abs(y3) < Epsilon):
break
x1, x2 = x2, ans
y1, y2 = y2, y3
print("\n\nThe numbers are: {:0.3f} and {:0.3f}".format(ans, ans+20))
答案 1 :(得分:0)
基于您的标题
此代码在大多数情况下都能正常工作。取自Secant Method Using Python (Output Included)
# Defining Function
def f(x):
return x**3 - 5*x - 9
# Implementing Secant Method
def secant(x0,x1,e,N):
print('\n\n*** SECANT METHOD IMPLEMENTATION ***')
step = 1
condition = True
while condition:
if f(x0) == f(x1):
print('Divide by zero error!')
break
x2 = x0 - (x1-x0)*f(x0)/( f(x1) - f(x0) )
print('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step, x2, f(x2)))
x0 = x1
x1 = x2
step = step + 1
if step > N:
print('Not Convergent!')
break
condition = abs(f(x2)) > e
print('\n Required root is: %0.8f' % x2)
# Input Section
x0 = input('Enter First Guess: ')
x1 = input('Enter Second Guess: ')
e = input('Tolerable Error: ')
N = input('Maximum Step: ')
# Converting x0 and e to float
x0 = float(x0)
x1 = float(x1)
e = float(e)
# Converting N to integer
N = int(N)
#Note: You can combine above three section like this
# x0 = float(input('Enter First Guess: '))
# x1 = float(input('Enter Second Guess: '))
# e = float(input('Tolerable Error: '))
# N = int(input('Maximum Step: '))
# Starting Secant Method
secant(x0,x1,e,N)