如何固定输入数组以满足输入形状?
我试图按here所述转置输入数组,但是错误是相同的。
ValueError:检查输入时出错:预期density_input具有形状(21,)但具有形状(1,)的数组
import tensorflow as tf
import numpy as np
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(40, input_shape=(21,), activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
arrTest1 = np.array([0.1,0.1,0.1,0.1,0.1,0.5,0.1,0.0,0.1,0.6,0.1,0.1,0.0,0.0,0.0,0.1,0.0,0.0,0.1,0.0,0.0])
scores = model.predict(arrTest1)
print(scores)
答案 0 :(得分:3)
您的测试数组arrTest1
是21的一维向量:
>>> arrTest1.ndim
1
您要提供给模型的是一排21个功能。您只需要再加上一组括号即可:
arrTest1 = np.array([[0.1, 0.1, 0.1, 0.1, 0.1, 0.5, 0.1, 0., 0.1, 0.6, 0.1, 0.1, 0., 0., 0., 0.1, 0., 0., 0.1, 0., 0.]])
现在您有一个包含21个值的行:
>>> arrTest1.shape
(1, 21)