我尝试过这样的事情:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs', sess.graph)
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch
sess.run(training_op, feed_dict={X: x_batch, y: y_batch})
if iteration % int(1*train_set_size/batch_size) == 0:
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
y_train_pred,summary1,outimage = sess.run([outputs,merged,out_img_sum], feed_dict={X: x_train,y:y_train})
y_valid_pred,summary2 = sess.run([outputs,merged], feed_dict={X: x_valid,y:y_valid})
y_test_pred,summary3 = sess.run([outputs,merged], feed_dict={X: x_test,y:y_test})
writer.add_summary(summary1, iteration*batch_size/train_set_size)
我愿意在张量板上显示y_train
和y_train_pred
的值。我该怎么做?这些就像数组一样,我没有办法在Tensorboard上显示这些值的比较。请帮助我。
答案 0 :(得分:1)
更新:
是的,您可以沿x轴绘图。您在张量板上获得错误图像的原因是因为int(iteration*float(batch_size)/train_set_size)
始终返回相同的值(根据您的要求为0.0001804630682330861)。我在下面根据您的情况创建了类似的代码(因为我没有您的数据)。而且效果很好。
import tensorflow as tf
import numpy as np
summary_writer = tf.summary.FileWriter('/tmp/test')
for iteration in range(5):
y_train_preds = np.random.rand(10)
summary = tf.Summary()
for idx, value in enumerate(y_train_preds):
summary.value.add(tag='y_train', simple_value=value)
summary_writer.add_summary(summary, iteration*len(y_train_preds)+idx)
summary_writer.close()
张量板上的输出
唯一需要注意的一点是,确保add_summary()
中的全局步长每次都应增加。
也许您可以尝试以下: 我已经更新了您的代码,供您尝试
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs', sess.graph)
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch
sess.run(training_op, feed_dict={X: x_batch, y: y_batch})
if iteration % int(1*train_set_size/batch_size) == 0:
summary = tf.Summary()
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
y_train_pred,summary1,outimage = sess.run([outputs,merged,out_img_sum], feed_dict={X: x_train,y:y_train})
y_valid_pred,summary2 = sess.run([outputs,merged], feed_dict={X: x_valid,y:y_valid})
y_test_pred,summary3 = sess.run([outputs,merged], feed_dict={X: x_test,y:y_test})
for value in y_train:
summary.value.add(tag='y_train', simple_value=value)
for idx, value in enumerate(y_train_pred):
summary.value.add(tag='y_train_pred', simple_value=value)
writer.add_summary(summary, iteration*len(y_train_pred)+idx)
writer.add_summary(summary1, int(iteration*float(batch_size)/train_set_size))