假设我有以下查询:
SELECT ga_channelGrouping, ga_sourceMedium,ga_campaign, SUM(ga_sessions) as sessions,
SUM(ga_sessionDuration)/SUM(ga_sessions) as avg_sessionDuration,
SUM(ga_users)as Users, SUM(ga_newUsers)as New_Users, SUM(ga_bounces)/SUM(ga_sessions)
AS ga_bounceRate, SUM(ga_pageviews)/SUM(ga_sessions)as pageViews_per_sessions,
SUM( ga_transactions)/SUM(ga_sessions) AS ga_conversionRate
FROM db.table
group by ga_channelGrouping, ga_sourceMedium,ga_campaign
我如何找到Big Query中连续30天的数据。我的DATE
列值具有以下格式:2018-06-19 11:00:00 UTC
答案 0 :(得分:2)
您可以使用DATE_ADD
或DATE_SUB
函数移动日期值,并使用TIMESTAMP_ADD
,TIMESTAMP_SUB
移动时间戳值。
因此您可以尝试:
SELECT ga_channelGrouping, ga_sourceMedium,ga_campaign, SUM(ga_sessions) as sessions,
SUM(ga_sessionDuration)/SUM(ga_sessions) as avg_sessionDuration,
SUM(ga_users)as Users, SUM(ga_newUsers)as New_Users, SUM(ga_bounces)/SUM(ga_sessions)
AS ga_bounceRate, SUM(ga_pageviews)/SUM(ga_sessions)as pageViews_per_sessions,
SUM( ga_transactions)/SUM(ga_sessions) AS ga_conversionRate
FROM db.table
WHERE your_date_column >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 24*30 HOUR)
group by ga_channelGrouping, ga_sourceMedium,ga_campaign
TIMESTAMP_SUB
不需要间隔DAY
,因此,我们已经完成了24*30
个小时才能返回30天。
编辑:如果您希望在一天中的任何时间回滚30天,则可以执行以下操作:
WHERE your_date_column >= TIMESTAMP_TRUNC(TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 24*30 HOUR), DAY)
OR
WHERE CAST(your_date_column AS DATE) >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY))
答案 1 :(得分:1)
我如何找到Big Query中连续30天的数据。我的DATE列值是这样的格式:2018-06-19 11:00:00 UTC
首先,我想指出的是aggregating last 30 days
与rolling 30 days
有很大的不同-因此,下面的答案实际上是针对rolling 30 days
与{{1 }}
以下内容适用于BigQuery Standard SQL,并假定您的日期列名为just last 30 days
,并且属于TIMESTAMP数据类型
your_date_column
让您了解它的工作原理-尝试使用下面的虚拟示例(为简单起见,它会滚动#standardSQL
SELECT
your_date_column, -- data type of TIMESTAMP with value like 2018-06-19 11:00:00 UTC
ga_channelGrouping,
ga_sourceMedium,
ga_campaign,
SUM(ga_sessions) OVER(win) AS sessions,
(SUM(ga_sessionDuration) OVER(win))/(SUM(ga_sessions) OVER(win)) AS avg_sessionDuration,
SUM(ga_users) OVER(win) AS Users,
SUM(ga_newUsers) OVER(win) AS New_Users,
(SUM(ga_bounces) OVER(win))/(SUM(ga_sessions) OVER(win)) AS ga_bounceRate,
(SUM(ga_pageviews) OVER(win))/(SUM(ga_sessions) OVER(win)) AS pageViews_per_sessions,
(SUM(ga_transactions) OVER(win))/(SUM(ga_sessions) OVER(win)) AS ga_conversionRate
FROM `project.dataset.table`
WINDOW win AS (
PARTITION BY ga_channelGrouping, ga_sourceMedium, ga_campaign
ORDER BY UNIX_DATE(DATE(your_date_column))
RANGE BETWEEN 29 PRECEDING AND CURRENT ROW
)
天)
3
结果为
#standardSQL
WITH `project.dataset.table` AS (
SELECT 1 value, TIMESTAMP '2018-06-19 11:00:00 UTC' your_date_column UNION ALL
SELECT 2, '2018-06-20 11:00:00 UTC' UNION ALL
SELECT 3, '2018-06-21 11:00:00 UTC' UNION ALL
SELECT 4, '2018-06-22 11:00:00 UTC' UNION ALL
SELECT 5, '2018-06-23 11:00:00 UTC' UNION ALL
SELECT 6, '2018-06-24 11:00:00 UTC' UNION ALL
SELECT 7, '2018-06-25 11:00:00 UTC' UNION ALL
SELECT 8, '2018-06-26 11:00:00 UTC' UNION ALL
SELECT 9, '2018-06-27 11:00:00 UTC' UNION ALL
SELECT 10, '2018-06-28 11:00:00 UTC'
)
SELECT
your_date_column,
value,
SUM(value) OVER(win) rolling_value
FROM `project.dataset.table`
WINDOW win AS (ORDER BY UNIX_DATE(DATE(your_date_column)) RANGE BETWEEN 2 PRECEDING AND CURRENT ROW)
ORDER BY your_date_column