Keras预测函数抛出AttributeError:“元组”对象没有属性“ ndim”

时间:2018-09-06 06:52:34

标签: machine-learning keras deep-learning lstm rnn

我正在遵循此link来在小型数据集上训练rnn分类器,以检查代码是否正常工作。

运行命令时 rnn.predict(data_test, 'answer.csv'),引发异常:

AttributeError: 'tuple' object has no attribute 'ndim'

这是预测功能

def predict(self, data_test, answer_filename):
    word_matrix, char_matrix, additional_features_matrix = data_test

    print("Test example: ")
    print(word_matrix[0])
    print(char_matrix[0])
    print(additional_features_matrix[0])
    preds = self.model.predict([word_matrix, char_matrix, additional_features_matrix], 
                               batch_size=self.batch_size, verbose=1)
    index_to_author = { 0: "EAP", 1: "HPL", 2: "MWS" }
    submission = pd.DataFrame({"id": test["id"], index_to_author[0]: preds[:, 0], 
                               index_to_author[1]: preds[:, 1], index_to_author[2]: preds[:, 2]})
    submission.to_csv(answer_filename, index=False)

word_matrixchar_matrixadditional_features_matrix的长度是可变的。在我的情况下,尺寸分别为(80,),(80,30)和(1153,15)。我用Google搜索它,发现我应该在输入的numpy数组中添加填充。

但是,链接中的代码工作正常。我无法理解我在做什么错。有人可以帮我吗?

1 个答案:

答案 0 :(得分:0)

我发现了自己的错误。如果您遵循此link,则会发现以下代码行:

_, additional_features_matrix_test = collect_additional_features(x.iloc[idx_train], x_test)

函数collect_additional_features返回两个ndarray的元组。我的错误是我错过了_,因此代码行变成了:

additional_features_matrix_test = collect_additional_features(x.iloc[idx_train], x_test)

因此additional_features_matrix_test变成了元组而不是ndarray,并且在将additional_features_matrix_test传递给LSTM的同时,抛出了错误AttributeError: 'tuple' object has no attribute 'ndim'