DF1是我现在拥有的,我想使DF1看起来像DF2。
所需的输出:
DUMP=
我有以下代码:
DF1 DF2
+---------+----------------------------------------+ +---------+-------------------------------------------------------------------+
| ID | Category | | ID | category_name |
+---------+----------------------------------------+ +---------+-------------------------------------------------------------------+
| 31898 | CP Bill Payment | | 31898 | CP Bill Payment + CP e-Transfer + CP IMT (CPS Limit + CPS Payee) |
| 31898 | CP e-Transfer + CP IMT | | 32614 | CP Bill Payment + CP e-Transfer + CP Other Transfer (CPS Blocked)|
| 31898 | CPS Limit + CPS Payee | | 35431 | CP Bill Payment + CP e-Transfer |
| 32614 | CP e-Transfer + CP Other Transfer | | 33987 | CP IMT (CPS Limit) |
| 32614 | CP Bill Payment | =====> | 35672 | CPS Blocked |
| 32614 | CPS Blocked | =====> | 37612 | CPS Blocked + CPS Stop/Cancel/Reverse |
| 35431 | CP e-Transfer | +---------+-------------------------------------------------------------------+
| 35431 | CP Bill Payment |
| 33987 | CP IMT |
| 33987 | CPS Limit |
| 35672 | CPS Blocked |
| 37612 | CPS Blocked + CPS Stop/Cancel/Reverse|
+---------+----------------------------------------+
逻辑是对于相同的ID 31898/32614/33987:如果包含CP *和CPS *,则应为CP *(CPS *)或CP * + CP *(CPS *); 35431:如果数组中没有CPS *,则只需使用+连接数组中的所有元素; 35672/37612:否则,仅数组中的元素。顺便说一句,类别应按升序排序。
代码正在运行,可能组合太多。如何使用UDF做同样的事情?还是有任何内置功能可以做到这一点?预先谢谢你
答案 0 :(得分:1)
这是如何使用UDAF的示例。显然,您不需要UDAF即可通过id串联列值,但是它允许添加更多逻辑。例如,要通过ID字段连接值,可以创建UDAF,如:
class ConcatenateStrings extends UserDefinedAggregateFunction {
override def inputSchema: StructType = StructType(StructField("input", StringType) :: Nil)
override def bufferSchema: StructType = StructType(StructField("pair", StringType) :: Nil)
override def dataType: DataType = StringType
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = buffer(0) = ""
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val b = buffer.getAs[String](0)
val i = input.getAs[String](0)
buffer(0) = { if(b.isEmpty) b + i else b + " + " + i }
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val b1 = buffer1.getAs[String](0)
val b2 = buffer2.getAs[String](0)
if(!b1.isEmpty)
buffer1(0) = (b1) ++ " + " ++ (b2)
else
buffer1(0) = b2
}
override def evaluate(buffer: Row): Any = {
val yourString = buffer.getAs[String](0)
// Compute your logic and return another String
yourString + "@procesed"
}
}
然后您可以将其包含在汇总调用中:
object testAppl0 {
def main(args: Array[String]) : Unit = {
val agg0 = new ConcatenateStrings()
implicit val spark: SparkSession =
SparkSession
.builder()
.appName("Test")
.master("local[1]")
.getOrCreate()
import spark.implicits._
val rows = Seq(Row(31898,"CP Bill Payment"), Row(31898,"CP e-Transfer + CP IMT"), Row(31898,"CPS Limit + CPS Payee "))
val schema = List(
StructField("ID", IntegerType, true),
StructField("Category", StringType, true))
val df = spark.createDataFrame(
spark.sparkContext.parallelize(rows),
StructType(schema)
)
df.groupBy("ID").agg(agg0($"Category")).show(false)
}
}
它将返回新列“ concatenatestrings(Category)”:
+-----+--------------------------------------------------------------------------+
|ID |concatenatestrings(Category) |
+-----+--------------------------------------------------------------------------+
|31898|CP Bill Payment + CP e-Transfer + CP IMT + CPS Limit + CPS Payee @procesed|
+-----+--------------------------------------------------------------------------+
检查一下,也许可以帮忙
答案 1 :(得分:1)
我现在能想到的:
//UDF
def mapColumn(col: String) = udf { (xs: Seq[String]) =>
xs.map { x =>
if (x.contains(col+" ")) x else null
}.filter(_ != null).mkString(" + ")
}
import org.apache.spark.sql.functions._
val df1 = df.groupBy("Id").agg(
mapColumn("CP")(sort_array(collect_set("Category"))).as("CategorySetCP"),
mapColumn("CPS")(sort_array(collect_set("Category"))).as("CategorySetCPS")
).withColumn("CategorySetCPS_New",concat(lit(" ("),'CategorySetCPS,lit(")")))
.withColumn("category_name",
when(length($"CategorySetCP") > 0 and length($"CategorySetCPS") > 0,concat($"CategorySetCP",$"CategorySetCPS_New")).
otherwise(when(length($"CategorySetCP") >0 and length($"CategorySetCPS") === 0,$"CategorySetCP").
otherwise($"CategorySetCPS"))
)
.select('Id,'category_name)
df1.show(false)
输出:
+-----+-----------------------------------------------------------------+
|Id |category_name |
+-----+-----------------------------------------------------------------+
|33987|CP IMT (CPS Limit) |
|32614|CP Bill Payment + CP e-Transfer + CP Other Transfer (CPS Blocked)|
|35672|CPS Blocked |
|35431|CP Bill Payment + CP e-Transfer |
|31898|CP Bill Payment + CP e-Transfer + CP IMT (CPS Limit + CPS Payee) |
|35612|CPS Blocked + CPS Stop/Cancel/Reverse |
+-----+-----------------------------------------------------------------+
希望这会有所帮助!