不确定如何操作子词典

时间:2018-09-05 14:25:31

标签: python python-3.6

我正在使用Twitch API,并且得到了以下字典:

用户数据

{"data": [
    {"display_name": "John", "id": "123"}, 
    {"display_name": "Frank", "id": "456"}, 
    {"display_name": "Billy", "id": "789"}]}

流数据

{"data": [
    {"id": "333444", "user_id": "456", "title": "Franks Stream"}
    {"id": "555666", "user_id": "789", "title": "Billys Stream"}
    {"id": "111222", "user_id": "123", "title": "Johns Stream"}]}

我不能保证两者的顺序都相同,所以我想使用id / user_id将两者结合:

组合数据

{"data": [
    {"id": "333444", "user_id": "456", "title": "Franks Stream", "display_name": "Frank"}
    {"id": "555666", "user_id": "789", "title": "Billys Stream", "display_name": "Billy"}
    {"id": "111222", "user_id": "123", "title": "Johns Stream", "display_name": "John"}]}

如果可能,我想合并更多字段,但是是否可以像这样加入这些词典?

4 个答案:

答案 0 :(得分:1)

设置

user_data = {
    "data": [
        {"display_name": "John", "id": "123"}, 
        {"display_name": "Frank", "id": "456"}, 
        {"display_name": "Billy", "id": "789"}]}

stream_data = {
    "data": [
        {"id": "333444", "user_id": "456", "title": "Franks Stream"},
        {"id": "555666", "user_id": "789", "title": "Billys Stream"},
        {"id": "111222", "user_id": "123", "title": "Johns Stream"}]}

解决方案

使用字典理解,您可以在id字段上键入新的用户数据字典,然后使用该数据更新流数据。

new_user_data = {row.get("id"): row.get('display_name')
                 for row in user_data['data']}
>>> new_user_data
{'123': 'John', '456': 'Frank', '789': 'Billy'}

现在使用此词典更新数据中的display_name(如果您不想变异原始数据,则可能希望创建一个副本)。

for row in stream_data['data']:
    id_ = row.get('user_id')
    row['display_name']  = new_user_data[id_]

>>> stream_data['data']
[{'display_name': 'Frank',
  'id': '333444',
  'title': 'Franks Stream',
  'user_id': '456'},
 {'display_name': 'Billy',
  'id': '555666',
  'title': 'Billys Stream',
  'user_id': '789'},
 {'display_name': 'John',
  'id': '111222',
  'title': 'Johns Stream',
  'user_id': '123'}]

如果要存储多个用户数据作为值(即,不只是id作为键,而display_name作为值),则可以使用{{3} }来固定它们。

user_data = {
    "data": [
        {"display_name": "John", "id": "123", "description": "boring"}, 
        {"display_name": "Frank", "id": "456", "description": "smart"}, 
        {"display_name": "Billy", "id": "789", "description": "funny"}]}


from collections import namedtuple

UserData = namedtuple('UserData', ('display_name', 'description'))

for row in user_data['data']:
    id_ = row.pop('id')
    new_user_data[id_] = UserData(**row)

for row in stream_data['data']:
    id_ = row.get('user_id')
    row.update(**new_user_data[id_].__dict__)


>>> new_user_data
{'123': UserData(display_name='John', description='boring'),
 '456': UserData(display_name='Frank', description='smart'),
 '789': UserData(display_name='Billy', description='funny')}

>>> stream_data
{'data': [
    {'description': 'smart',
     'display_name': 'Frank',
     'id': '333444',
     'title': 'Franks Stream',
     'user_id': '456'},
    {'description': 'funny',
     'display_name': 'Billy',
     'id': '555666',
     'title': 'Billys Stream',
     'user_id': '789'},
    {'description': 'boring',
     'display_name': 'John',
     'id': '111222',
     'title': 'Johns Stream',
     'user_id': '123'}]}

答案 1 :(得分:0)

您可以使用itertools.groupby

import itertools
from functools import reduce
d = {'data': [{'display_name': 'John', 'id': '123'}, {'display_name': 'Frank', 'id': '456'}, {'display_name': 'Billy', 'id': '789'}]}
d1 = {'data': [{'id': '333444', 'user_id': '456', 'title': 'Franks Stream'}, {'id': '555666', 'user_id': '789', 'title': 'Billys Stream'}, {'id': '111222', 'user_id': '123', 'title': 'Johns Stream'}]}
combined = sorted(d['data']+d1['data'], key=lambda x:x.get('user_id', x['id']))
new_data = [list(b) for _, b in itertools.groupby(combined, key=lambda x:x.get('user_id', x['id']))]
final_results = {'data':[reduce(lambda x, y:{**x, **y}, i) for i in new_data]}

输出:

{'data': [
  {'display_name': 'John', 'id': '111222', 'user_id': '123', 'title': 'Johns Stream'}, 
  {'display_name': 'Frank', 'id': '333444', 'user_id': '456', 'title': 'Franks Stream'}, 
  {'display_name': 'Billy', 'id': '555666', 'user_id': '789', 'title': 'Billys Stream'}
]}

答案 2 :(得分:0)

让我们在这里使用pandas

import pandas as pd 
df2=pd.DataFrame(d2['data'])
df1=pd.DataFrame(d1['data']).rename(columns={'id':'user_id'})
{'data':df1.merge(df2).to_dict('r')}
Out[150]: 
{'data': [{'display_name': 'John',
   'id': '111222',
   'title': 'Johns Stream',
   'user_id': '123'},
  {'display_name': 'Frank',
   'id': '333444',
   'title': 'Franks Stream',
   'user_id': '456'},
  {'display_name': 'Billy',
   'id': '555666',
   'title': 'Billys Stream',
   'user_id': '789'}]}

答案 3 :(得分:0)

您可以先将用户数据字典转换为从iddisplay_name的映射:

u = {"data": [
    {"display_name": "John", "id": "123"},
    {"display_name": "Frank", "id": "456"},
    {"display_name": "Billy", "id": "789"}]}
s = {"data": [
    {"id": "333444", "user_id": "456", "title": "Franks Stream"},
    {"id": "555666", "user_id": "789", "title": "Billys Stream"},
    {"id": "111222", "user_id": "123", "title": "Johns Stream"}]}
m = dict(reversed(tuple(i.values())) for i in u['data'])
combined = {'data': [{**i, 'display_name': m[i['user_id']]} for i in s['data']]}

combined变为:

{'data': [{'id': '333444', 'user_id': '456', 'title': 'Franks Stream', 'display_name': 'Frank'}, {'id': '555666', 'user_id': '789', 'title': 'Billys Stream', 'display_name': 'Billy'}, {'id': '111222', 'user_id': '123', 'title': 'Johns Stream', 'display_name': 'John'}]}