根据另一个DataFrame切片pandas.DataFrame

时间:2018-09-05 03:20:28

标签: python pandas

如何根据df1和df2创建df3?

df1 = pd.DataFrame([[1,2,3],[10,20,30],[100,200,300]], index=['a','b','c'],columns=['A','B','C'])
df2 = pd.DataFrame([['A','C'],['B','A'],['C','B']],index=['a','b','c'],columns=[0,1])
df3 = pd.DataFrame([[1,3],[20,10],[300,200]], index=['a','b','c'],columns=[0,1])

这是我的代码,

df1.apply(lambda x: x.loc[df2.loc[x.name,:]], axis=1)

这是df1

df1

这是df2

df2

这是df3

enter image description here

2 个答案:

答案 0 :(得分:4)

似乎您可以在lookup之后使用df2使用stack

s=df2.stack()
s
Out[321]: 
a  0    A
   1    C
b  0    B
   1    A
c  0    C
   1    B
dtype: object
pd.Series(df1.lookup(s.index.get_level_values(0),s),index=s.index).unstack()
Out[322]: 
     0    1
a    1    3
b   20   10
c  300  200

或使用apply

df2.apply(lambda x : df1.loc[x.name,x].values,axis=1)
Out[327]: 
     0    1
a    1    3
b   20   10
c  300  200

答案 1 :(得分:0)

使用lookup

In [993]: pd.DataFrame({k: df1.lookup(df2.index, df2[c]) for k, c in enumerate(df2)},
                       index=df1.index)
Out[993]:
     0    1
a    1    3
b   20   10
c  300  200

In [973]: df2.apply(lambda x: pd.Series(df1.loc[x.name, y] for y in x), axis=1)
Out[973]:
     0    1
a    1    3
b   20   10
c  300  200