我需要以下帮助:
我试图将一个csv文件导入到Jupyter笔记本中,但无济于事。
我使用的代码是:
dfa = pd.read_csv('Filename.csv')
并给出以下错误消息:
---------------------------------------------------------------------------
ParserError Traceback (most recent call last)
<ipython-input-3-164d461fc4d7> in <module>()
----> 1 dfa = pd.read_csv('Airpollution.csv')
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision)
676 skip_blank_lines=skip_blank_lines)
677
--> 678 return _read(filepath_or_buffer, kwds)
679
680 parser_f.__name__ = name
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
444
445 try:
--> 446 data = parser.read(nrows)
447 finally:
448 parser.close()
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/io/parsers.py in read(self, nrows)
1034 raise ValueError('skipfooter not supported for iteration')
1035
-> 1036 ret = self._engine.read(nrows)
1037
1038 # May alter columns / col_dict
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/io/parsers.py in read(self, nrows)
1846 def read(self, nrows=None):
1847 try:
-> 1848 data = self._reader.read(nrows)
1849 except StopIteration:
1850 if self._first_chunk:
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.read()
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_low_memory()
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_rows()
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._tokenize_rows()
pandas/_libs/parsers.pyx in pandas._libs.parsers.raise_parser_error()
ParserError: Error tokenizing data. C error: Expected 1 fields in line 4, saw 11
我已经检查了文件是否从同一文件夹中打开,并且它们都存储在我的桌面中。
我安装了熊猫,matplotlib和seaborn。我已经尝试了所有方法(Stackoverflow的其他解决方案),但无法弄清楚为什么我无法导入。请赐教。谢谢!
-
@jpp: Another csv file was able to work 这很奇怪,因为我尝试使用另一个csv文件并且它起作用了。我无法加载这些文件。
我正在使用以下信息:
Subject: Environment
Topic : Air Quality and Climate
" Title : M890641 - Air Pollution Levels, Annual "
, , , , , , , , , ,
Variables , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 ,
Sulphur Dioxide (Annual Mean) (Microgram Per Cubic Metre) , 12 , 11 , 9 , 11 , 10 , 13 , 14 , 12 , 12 , 13 ,
Sulphur Dioxide (Maximum 24-hour Mean) (Microgram Per Cubic Metre) , 84 , 80 , 93 , 104 , 80 , 98 , 75 , 83 , 75 , 61 ,
Nitrogen Dioxide (Annual Mean) (Microgram Per Cubic Metre) , 22 , 22 , 22 , 23 , 25 , 25 , 25 , 24 , 22 , 26 ,
Nitrogen Dioxide (Maximum 1-hour Mean) (Microgram Per Cubic Metre) , 177 , 126 , 147 , 153 , 189 , 154 , 132 , 121 , 99 , 123 ,
Particulate Matter (PM10) (Annual Mean) (Microgram Per Cubic Metre) , 27 , 25 , 29 , 26 , 27 , 29 , 31 , 30 , 37 , 26 ,
Particulate Matter (PM10) (99th Percentile 24-hour Mean) (Microgram Per Cubic Metre) , 53 , 49 , 59 , 76 , 55 , 57 , 215 , 75 , 186 , 61 ,
Particulate Matter (PM2.5) (Annual Mean) (Microgram Per Cubic Metre) , 19 , 16 , 19 , 17 , 17 , 19 , 20 , 18 , 24 , 15 ,
Particulate Matter (PM2.5) (99th Percentile 24-hour Mean) (Microgram Per Cubic Metre) , 37 , 32 , 44 , 56 , 41 , 42 , 176 , 51 , 145 , 40 ,
Carbon Monoxide (Maximum 8-hour Mean) (Milligram Per Cubic Metre) , 1.7 , 1.6 , 1.9 , 2.4 , 2 , 1.9 , 5.5 , 1.8 , 3.3 , 2.2 ,
Carbon Monoxide (Maximum 1-hour Mean) (Milligram Per Cubic Metre) , 2.5 , 2.3 , 3.9 , 2.8 , 2.6 , 2.4 , 7.5 , 2.7 , 3.5 , 2.7 ,
Ozone (Maximum 8-hour Mean) (Microgram Per Cubic Metre) , 206 , 183 , 105 , 139 , 123 , 122 , 139 , 135 , 152 , 115 ,
SOURCE: NATIONAL ENVIRONMENT AGENCY
Generated by: SingStat Table Builder
Date generated: 05/09/2018
Contact: info@singstat.gov.sg
这:
Subject: Death and Life Expectancy
Topic : Death and Life Expectancy
" Title : M810131 - Deaths By Broad Groups Of Causes, Annual "
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,Number
Variables , 1969 , 1970 , 1971 , 1972 , 1973 , 1974 , 1975 , 1976 , 1977 , 1978 , 1979 , 1980 , 1981 , 1982 , 1983 , 1984 , 1985 , 1986 , 1987 , 1988 , 1989 , 1990 , 1991 , 1992 , 1993 , 1994 , 1995 , 1996 , 1997 , 1998 , 1999 , 2000 , 2001 , 2002 , 2003 , 2004 , 2005 , 2006 , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 , 2017 ,
Total Deaths By Causes ," 10,224 "," 10,717 "," 11,329 "," 11,522 "," 11,920 "," 11,674 "," 11,447 "," 11,648 "," 11,955 "," 12,065 "," 12,468 "," 12,505 "," 12,863 "," 12,896 "," 13,321 "," 13,162 "," 13,348 "," 12,821 "," 13,173 "," 13,690 "," 14,069 "," 13,891 "," 13,876 "," 14,337 "," 14,461 "," 14,946 "," 15,569 "," 15,590 "," 15,305 "," 15,657 "," 15,516 "," 15,693 "," 15,367 "," 15,820 "," 16,036 "," 15,860 "," 16,215 "," 16,393 "," 17,140 "," 17,222 "," 17,101 "," 17,610 "," 18,027 "," 18,481 "," 18,938 "," 19,393 "," 19,862 "," 20,017 "," 20,905 ",
Infective And Parasitic Diseases , 708 , 727 , 702 , 752 , 775 , 714 , 630 , 554 , 523 , 502 , 503 , 425 , 432 , 393 , 432 , 390 , 375 , 402 , 432 , 430 , 439 , 347 , 321 , 342 , 398 , 366 , 369 , 358 , 318 , 361 , 311 , 276 , 296 , 289 , 250 , 296 , 373 , 257 , 307 , 285 , 279 , 269 , 244 , 233 , 211 , 217 , 194 , 174 , 189 ,
Tuberculosis , 419 , 458 , 439 , 489 , 450 , 472 , 420 , 358 , 340 , 318 , 331 , 240 , 221 , 207 , 224 , 163 , 177 , 177 , 186 , 168 , 132 , 113 , 104 , 101 , 115 , 101 , 118 , 132 , 115 , 128 , 107 , 101 , 104 , 92 , 79 , 79 , 67 , 66 , 85 , 83 , 75 , 77 , 68 , 65 , 51 , 60 , 41 , 41 , 32 ,
Neoplasms ," 1,577 "," 1,633 "," 1,728 "," 1,821 "," 1,912 "," 2,002 "," 2,123 "," 2,278 "," 2,326 "," 2,415 "," 2,542 "," 2,623 "," 2,672 "," 2,729 "," 2,903 "," 2,817 "," 2,939 "," 2,921 "," 3,169 "," 3,233 "," 3,321 "," 3,314 "," 3,405 "," 3,497 "," 3,560 "," 3,785 "," 3,921 "," 4,034 "," 4,178 "," 4,091 "," 4,168 "," 4,278 "," 4,384 "," 4,465 "," 4,187 "," 4,353 "," 4,331 "," 4,722 "," 4,803 "," 5,081 "," 5,063 "," 5,078 "," 5,461 "," 5,651 "," 5,849 "," 5,790 "," 5,986 "," 5,993 "," 6,237 ",
Malignant Neoplasms ," 1,533 "," 1,596 "," 1,688 "," 1,773 "," 1,863 "," 1,955 "," 2,083 "," 2,245 "," 2,286 "," 2,386 "," 2,488 "," 2,561 "," 2,616 "," 2,668 "," 2,858 "," 2,776 "," 2,893 "," 2,887 "," 3,131 "," 3,194 "," 3,283 "," 3,269 "," 3,361 "," 3,456 "," 3,531 "," 3,756 "," 3,898 "," 3,985 "," 4,128 "," 4,050 "," 4,134 "," 4,238 "," 4,339 "," 4,425 "," 4,146 "," 4,303 "," 4,289 "," 4,677 "," 4,745 "," 5,038 "," 5,010 "," 5,025 "," 5,411 "," 5,565 "," 5,775 "," 5,701 "," 5,903 "," 5,925 "," 6,077 ",
" Endocrine, Nutritional And Metabolic Diseases ", 331 , 250 , 308 , 271 , 342 , 377 , 375 , 408 , 429 , 403 , 403 , 359 , 404 , 397 , 423 , 512 , 492 , 508 , 521 , 525 , 461 , 388 , 359 , 269 , 309 , 374 , 327 , 403 , 366 , 401 , 444 , 458 , 629 , 530 , 473 , 545 , 593 , 620 , 722 , 551 , 378 , 272 , 356 , 279 , 253 , 296 , 270 , 363 , 340 ,
Diabetes , 184 , 134 , 212 , 207 , 247 , 257 , 259 , 334 , 377 , 334 , 347 , 319 , 368 , 361 , 373 , 469 , 464 , 479 , 492 , 501 , 419 , 332 , 320 , 238 , 264 , 334 , 271 , 320 , 282 , 308 , 350 , 355 , 512 , 425 , 373 , 474 , 510 , 536 , 609 , 463 , 290 , 182 , 299 , 268 , 247 , 277 , 250 , 343 , 321 ,
Diseases Of The Blood And Blood-forming Organs , 71 , 51 , 60 , 50 , 61 , 60 , 52 , 32 , 50 , 45 , 41 , 31 , 42 , 33 , 33 , 28 , 29 , 30 , 35 , 35 , 48 , 50 , 40 , 33 , 34 , 24 , 37 , 37 , 44 , 35 , 50 , 54 , 52 , 44 , 39 , 33 , 40 , 36 , 31 , 46 , 30 , 41 , 41 , 20 , 14 , 23 , 10 , 14 , 17 ,
Diseases Of The Nervous System And Sense Organs , 221 , 173 , 166 , 171 , 169 , 149 , 133 , 129 , 110 , 114 , 122 , 131 , 114 , 121 , 92 , 97 , 87 , 87 , 102 , 133 , 111 , 143 , 117 , 127 , 93 , 71 , 89 , 89 , 95 , 110 , 105 , 107 , 122 , 94 , 67 , 81 , 68 , 62 , 64 , 75 , 68 , 92 , 117 , 166 , 137 , 144 , 210 , 226 , 185 ,
Diseases Of The Circulatory System ," 2,733 "," 2,899 "," 3,120 "," 2,999 "," 3,169 "," 3,295 "," 3,369 "," 3,798 "," 3,889 "," 3,983 "," 4,233 "," 4,305 "," 4,413 "," 4,430 "," 4,436 "," 4,637 "," 4,651 "," 4,482 "," 4,675 "," 4,847 "," 5,082 "," 5,152 "," 5,070 "," 5,270 "," 5,315 "," 5,460 "," 5,560 "," 5,896 "," 5,680 "," 5,711 "," 5,810 "," 5,749 "," 5,588 "," 5,401 "," 5,727 "," 5,423 "," 5,397 "," 5,441 "," 5,835 "," 5,794 "," 5,611 "," 5,807 "," 5,720 "," 5,747 "," 5,765 "," 5,987 "," 6,101 "," 6,107 "," 6,541 ",
Heart And Hypertensive Diseases ," 1,761 "," 1,780 "," 1,925 "," 1,819 "," 1,967 "," 2,014 "," 2,000 "," 2,283 "," 2,426 "," 2,518 "," 2,752 "," 2,777 "," 2,892 "," 2,866 "," 2,911 "," 3,156 "," 3,129 "," 3,028 "," 3,251 "," 3,318 "," 3,416 "," 3,385 "," 3,234 "," 3,457 "," 3,552 "," 3,653 "," 3,742 "," 3,984 "," 3,943 "," 3,950 "," 4,061 "," 3,976 "," 4,075 "," 3,856 "," 4,067 "," 3,714 "," 3,656 "," 3,833 "," 4,197 "," 4,201 "," 4,081 "," 4,161 "," 3,920 "," 3,848 "," 3,914 "," 4,165 "," 4,534 "," 4,576 "," 4,970 ",
Cerebrovascular Disease , 863 ," 1,038 "," 1,103 "," 1,080 "," 1,131 "," 1,213 "," 1,244 "," 1,427 "," 1,360 "," 1,382 "," 1,409 "," 1,447 "," 1,438 "," 1,469 "," 1,454 "," 1,413 "," 1,418 "," 1,355 "," 1,343 "," 1,414 "," 1,551 "," 1,666 "," 1,700 "," 1,697 "," 1,652 "," 1,692 "," 1,701 "," 1,805 "," 1,645 "," 1,633 "," 1,633 "," 1,625 "," 1,409 "," 1,393 "," 1,556 "," 1,562 "," 1,616 "," 1,462 "," 1,490 "," 1,435 "," 1,375 "," 1,472 "," 1,628 "," 1,714 "," 1,680 "," 1,620 "," 1,357 "," 1,317 "," 1,310 ",
Diseases Of The Respiratory System ," 1,235 "," 1,473 "," 1,502 "," 1,653 "," 1,663 "," 1,631 "," 1,632 "," 1,651 "," 1,902 "," 1,724 "," 2,024 "," 1,965 "," 2,196 "," 2,257 "," 2,429 "," 2,096 "," 2,241 "," 1,974 "," 1,942 "," 2,110 "," 2,167 "," 2,112 "," 2,289 "," 2,522 "," 2,588 "," 2,564 "," 2,912 "," 2,534 "," 2,385 "," 2,579 "," 2,357 "," 2,505 "," 2,239 "," 2,763 "," 2,992 "," 2,851 "," 3,124 "," 2,913 "," 2,948 "," 2,989 "," 3,188 "," 3,434 "," 3,493 "," 3,708 "," 4,061 "," 4,232 "," 4,417 "," 4,440 "," 4,757 ",
Pneumonia , 655 , 843 , 875 , 951 , 950 , 969 , 948 ," 1,010 "," 1,215 ", 942 ," 1,124 "," 1,129 "," 1,284 "," 1,375 "," 1,513 "," 1,204 "," 1,287 "," 1,082 ", 998 ," 1,039 "," 1,130 "," 1,191 "," 1,285 "," 1,420 "," 1,596 "," 1,670 "," 2,028 "," 1,693 "," 1,553 "," 1,780 "," 1,641 "," 1,794 "," 1,540 "," 2,079 "," 2,340 "," 2,232 "," 2,437 "," 2,244 "," 2,375 "," 2,387 "," 2,614 "," 2,766 "," 2,879 "," 3,096 "," 3,512 "," 3,680 "," 3,859 "," 3,855 "," 4,212 ",
Diseases Of The Digestive System , 402 , 454 , 463 , 463 , 453 , 451 , 423 , 384 , 382 , 359 , 382 , 368 , 385 , 400 , 403 , 369 , 394 , 326 , 329 , 380 , 363 , 374 , 406 , 353 , 361 , 394 , 409 , 416 , 357 , 418 , 412 , 326 , 307 , 339 , 383 , 356 , 385 , 384 , 392 , 377 , 351 , 436 , 426 , 414 , 418 , 482 , 477 , 467 , 485 ,
Diseases Of The Genito-urinary System , 234 , 239 , 252 , 279 , 275 , 320 , 311 , 281 , 324 , 381 , 349 , 366 , 366 , 319 , 375 , 405 , 319 , 343 , 393 , 380 , 370 , 346 , 369 , 362 , 371 , 444 , 483 , 444 , 399 , 494 , 470 , 486 , 487 , 594 , 587 , 641 , 634 , 637 , 739 , 753 , 861 , 893 , 918 , 934 , 967 , 951 , 928 , 913 , 925 ,
Congenital Anomalies , 181 , 150 , 186 , 172 , 189 , 177 , 146 , 156 , 141 , 185 , 184 , 185 , 178 , 182 , 155 , 172 , 189 , 202 , 171 , 201 , 170 , 189 , 164 , 163 , 160 , 148 , 157 , 130 , 108 , 112 , 95 , 85 , 79 , 69 , 59 , 49 , 67 , 70 , 55 , 60 , 60 , 60 , 53 , 54 , 47 , 50 , 62 , 72 , 49 ,
Congenital Anomalies Of Heart , 84 , 76 , 102 , 93 , 94 , 101 , 76 , 70 , 70 , 98 , 105 , 111 , 109 , 101 , 86 , 91 , 84 , 101 , 87 , 98 , 75 , 84 , 82 , 92 , 94 , 90 , 89 , 74 , 68 , 57 , 48 , 48 , 33 , 40 , 32 , 28 , 38 , 42 , 40 , 32 , 36 , 35 , 21 , 25 , 21 , 26 , 32 , 38 , 22 ,
Certain Causes Of Perinatal Mortality , 460 , 463 , 455 , 502 , 477 , 322 , 254 , 221 , 247 , 239 , 261 , 227 , 208 , 215 , 149 , 151 , 147 , 128 , 128 , 127 , 135 , 123 , 89 , 82 , 76 , 68 , 51 , 64 , 61 , 62 , 52 , 48 , 24 , 52 , 41 , 22 , 39 , 43 , 32 , 39 , 49 , 34 , 49 , 44 , 43 , 42 , 30 , 36 , 39 ,
" Accidents, Poisonings And Violence ", 811 , 836 , 968 , 982 , 995 , 894 , 887 , 890 , 914 ," 1,057 ", 876 , 899 , 938 , 966 ," 1,085 "," 1,095 "," 1,082 "," 1,025 ", 931 , 958 ," 1,042 "," 1,008 "," 1,074 "," 1,127 "," 1,066 "," 1,122 "," 1,113 "," 1,040 "," 1,187 "," 1,110 "," 1,066 "," 1,133 "," 1,036 "," 1,053 "," 1,062 "," 1,028 "," 1,017 "," 1,027 "," 1,036 "," 1,006 ", 978 , 973 , 989 ," 1,030 ", 933 , 909 , 895 , 890 , 840 ,
Suicides , 188 , 185 , 230 , 235 , 240 , 229 , 252 , 257 , 224 , 266 , 249 , 271 , 191 , 239 , 267 , 211 , 327 , 329 , 302 , 367 , 395 , 354 , 319 , 298 , 296 , 347 , 401 , 271 , 346 , 371 , 309 , 348 , 357 , 361 , 346 , 381 , 405 , 419 , 374 , 364 , 401 , 353 , 361 , 467 , 422 , 415 , 409 , 429 , 361 ,
Transport Accidents , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , na , 199 , 232 , 226 , 201 , 208 , 207 , 192 , 176 , 183 , 168 , 164 , 141 ,
Other Diseases And Causes ," 1,260 "," 1,369 "," 1,419 "," 1,407 "," 1,440 "," 1,282 "," 1,112 ", 866 , 718 , 658 , 548 , 621 , 515 , 454 , 406 , 393 , 403 , 393 , 345 , 331 , 360 , 345 , 173 , 190 , 130 , 126 , 141 , 145 , 127 , 173 , 176 , 188 , 124 , 127 , 167 , 182 , 147 , 181 , 176 , 166 , 185 , 221 , 160 , 201 , 240 , 270 , 282 , 322 , 301 ,
"Deaths prior to 1979 are classified according to the eighth (1965) revision of the International Classification of Diseases. Deaths from 1979 to 2011 are classified according to the ninth (1975) revision. From 2012, deaths are classified according to the tenth revision."
SOURCE: REGISTRY OF BIRTHS AND DEATHS
Generated by: SingStat Table Builder
Date generated: 05/09/2018
Contact: info@singstat.gov.sg
我不太确定它是否与Mac中的文件或设置有关。谢谢!
答案 0 :(得分:2)
您应该考虑使用pd.read_csv
可用的参数。例如,您可以指定分隔符并跳过行。您在末尾有一个空列,在底部有一个垃圾,但这可以在读取文件后 处理。
例如:
Failed to clear cache. Make sure you have the proper permissions.
答案 1 :(得分:0)
您可以跳过坏行(字段数不匹配):
dfa = pd.read_csv('Filename.csv',error_bad_lines=False)