如何修复代码中的错误,我使用的是python 3.7,macOS high sierra
已安装的库为:sklearn
matplotlib
numpy
。
代码:
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
import numpy
digits=datasets.load_digits()
'''
print(digits.data)
print(digits.target)
print(digits.images[0])
'''
clf=svm.SVC(gamma=0.001, C=1.0)
print(len(digits.data))
x,y = digits.data[:-1],digits.target[:-1]
clf.fit(x,y)
print('prediction:',clf.predict(digits.data[-1]))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r,
interpolation="nearest")
plt.show()
错误:
Traceback (most recent call last):
File "/Users/harmanthind/Documents/Python/scikit learn
liberary/pehla.py", line 21, in <module>
print('prediction:',clf.predict(digits.data[-1]))
File"/Library/Frameworks/
Python.framework/Versions/3.7/lib/python3.7/site-
packages/sklearn/svm/base.py", line 548, in predict
y = super(BaseSVC, self).predict(X)
File
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-
packages/sklearn/svm/base.py", line 308, in predict
X = self._validate_for_predict(X)
File
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-
packages/sklearn/svm/base.py", line 439, in _validate_for_predict
X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C")
File
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-
packages/sklearn/utils/validation.py", line 441, in check_array
"if it contains a single sample.".format(array))
ValueError: Expected 2D array, got 1D array instead:
array=[ 0. 0. 10. 14. 8. 1. 0. 0. 0. 2. 16. 14. 6. 1. 0. 0.
0. 0.
15. 15. 8. 15. 0. 0. 0. 0. 5. 16. 16. 10. 0. 0. 0. 0. 12.
15.
15. 12. 0. 0. 0. 4. 16. 6. 4. 16. 6. 0. 0. 8. 16. 10. 8.
16.
8. 0. 0. 1. 8. 12. 14. 12. 1. 0.].
Reshape your data either using array.reshape(-1, 1) if your data has
a single feature or array.reshape(1, -1) if it contains a single
sample.
答案 0 :(得分:0)
您 正确缩进 了吗?
我已经使用正确的缩进在我的计算机( Windows 8.1 )上运行了您的代码,并且该代码运行了 fine 。
缩进代码:
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
import numpy
digits=datasets.load_digits()
'''
print(digits.data)
print(digits.target)
print(digits.images[0])
'''
clf=svm.SVC(gamma=0.001, C=1.0)
print(len(digits.data))
x,y = digits.data[:-1],digits.target[:-1]
clf.fit(x,y)
print('prediction:',clf.predict([digits.data[-1]]))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation="nearest")
plt.show()
此外,如果它不起作用,请尝试更改内核/解释器。尝试 Python 3.6.x 内核/解释器。
p.s:我已经在Thonny IDE上使用Python 3.6.0来运行测试该代码,并且在我的机器上工作正常。