我想删除background中的黑色部分或将其更改为其他颜色,因为我试图检测轮廓内的暗像素,但这似乎不起作用,因为两者都在黑色背景下并且暗像素是黑色的...
这是我尝试过的方法,但请提出其他可能的方法。.谢谢您
我尝试提取黑色背景并将其更改为yellow
请在下面找到我的代码:
import cv2
import numpy as np
mask_color= (0.0,0.0,1.0)
#reading the image
img= cv2.imread('notused.jpg')
#convering the image into grayscale
gray_image= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#applying threshold
ret,thresh= cv2.threshold(gray_image,70,255,cv2.THRESH_BINARY)
#finding contours on the original image
_, contours,hierarchy =cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
#creating a mask as of the image size which is a black image
mask= np.zeros(img.shape[:2],np.uint8)
#inverted to get a white image
maskinv=cv2.bitwise_not(mask)
#drawn contours on the white image
mask_contours=cv2.drawContours(maskinv,contours,0,0,-3)
#converted to 3 channels
mask_stack= np.dstack([mask_contours]*3)
#to get only the background and remove all the contours
img1=cv2.bitwise_xor(img,img,mask)
#changing every pixel of the background image to yellow
for y in range(img1.shape[0]-1): #row values
for x in range(img1.shape[1]-1): #column values
img1[y,x]=(0,255,255)
然后,我对此进行了帮助:How do I remove the background from this kind of image?
这是将原始图像与创建的背景混合在一起,但似乎不起作用并发出错误消息
mask_stack= mask_contours.astype('float32')/255.0
img1=img1.astype('float32')/255.0
masked= (mask_stack *img1)+((1-mask_stack)*mask_color)
masked=(masked*255).astype('uint8')
cv2.waitKey(0)
cv2.destroyAllWindows()
这是错误消息: 请注意,我的img1和蒙版都具有相同的形状
回溯(最近通话最近一次):
文件“”,第1行,在 runfile('C:/Users/User/Anaconda3/darkpixeldetection.py',wdir ='C:/ Users / User / Anaconda3')
文件 “ C:\ Users \ User \ Anaconda3 \ lib \ site-packages \ spyder_kernels \ customize \ spydercustomize.py”, 行文件中的第678行 execfile(文件名,命名空间)
文件 “ C:\ Users \ User \ Anaconda3 \ lib \ site-packages \ spyder_kernels \ customize \ spydercustomize.py”, execfile中的第106行 exec(compile(f.read(),文件名,'exec'),命名空间)
文件“ C:/Users/User/Anaconda3/darkpixeldetection.py”,第69行,在 masked =(mask_stack * img1)+((1-mask_stack)* mask_color)
ValueError:操作数不能与形状一起广播 (1540,2670)(1540,2670,3)
img1.shape的输出:
(1540,2670,3)
mask_stack.shape的输出:
(1540,2670,3)
弗雷德: 这是我的input image,内容模糊。 这是我删除不必要的轮廓后得到的output image 这是我的代码:
import numpy as np
import cv2
img_original= cv2.imread('blueimagewithblur.jpg')
img_array=np.asarray(img_original)
blur= cv2.pyrMeanShiftFiltering(img_original,21,49)
gray_image= cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
ret,thresh= cv2.threshold(gray_image,70,255,cv2.THRESH_BINARY)
_, contours,hierarchy =cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
countourimage=cv2.drawContours(img_original,contours,-1,0,3)
largest_area= 2000
for i,c in enumerate(contours):
contour_areas=cv2.contourArea(c)
if(contour_areas>largest_area):
del contours[i]
x_rect,y_rect,w_rect,h_rect=cv2.boundingRect(c)
cropped=img_original[y_rect:y_rect+h_rect,x_rect:x_rect+w_rect]
cv2.imwrite('C:/Users/User/Anaconda3/stackoverflowexam.jpg',cropped)
cv2.imshow('croopedd',cropped)
cv2.waitKey(0)
cv2.destroyAllWindows()
答案 0 :(得分:0)
您可以使用背景占图像很大一部分的事实。如果知道要检测的东西总是小于一定大小,则可以使用轮廓区域过滤要忽略的轮廓。
maxArea = 12412 # whatever makes sense in your case
for i, contour in enumerate(contours):
area = cv2.contourArea(contour)
if area > maxArea :
del contours[i]