我有一个Excel表格,其中包含1000多个列和300行。这些单元格中的某些具有正常数据,而某些单元格具有红色的背景色,而某些单元格具有正常的白色背景,但文本为红色。例如,我的Excel工作表如下所示:
我正在将此excel表读入Python(pandas),以将其用作数据框并对其执行进一步的操作。但是,红色文本和红色单元格需要与正常单元格区别对待。
因此,我想将上面的表分为3个表,以便:表1具有所有单元格,但红色背景单元格为空。表2仅包含文本为红色的那些行和列。表3仅包含背景为红色的行和列。
我猜这不可能在熊猫中做到。我尝试使用StyleFrame,但失败了。
在这方面有人可以帮助吗?在这种情况下,是否有任何有用的python软件包?
答案 0 :(得分:2)
这几乎是实现此目的的方法。 不漂亮,因为StyleFrame并非真正设计为以这种方式使用。
读取源Excel文件
import numpy as np
from StyleFrame import StyleFrame, utils
sf = StyleFrame.read_excel('test.xlsx', read_style=True, use_openpyxl_styles=False)
def empty_red_background_cells(cell):
if cell.style.bg_color in {utils.colors.red, 'FFFF0000'}:
cell.value = np.nan
return cell
sf_1 = StyleFrame(sf.applymap(empty_red_background_cells))
print(sf_1)
# C1 C2 C3 C4 C5 C6
# 0 a1 1.0 s nan 1001.0 1234.0
# 1 a2 12.0 s nan 1001.0 4322.0
# 2 a3 nan s nan 1001.0 4432.0
# 3 a4 232.0 s nan 1001.0 4432.0
# 4 a5 343.0 s 99.0 nan nan
# 5 a6 3.0 s 99.0 1001.0 4432.0
# 6 a7 34.0 s 99.0 1001.0 4432.0
# 7 a8 5.0 s nan 1001.0 4432.0
# 8 a9 6.0 s 99.0 1001.0 4432.0
# 9 a10 565.0 s 99.0 nan 4432.0
# 10 a11 5543.0 s 99.0 1001.0 4432.0
# 11 a12 112.0 s 99.0 1001.0 nan
# 12 a13 34345.0 s 99.0 1001.0 4432.0
# 13 a14 0.0 s 99.0 nan nan
# 14 a15 453.0 s 99.0 1001.0 nan
def only_cells_with_red_text(cell):
return cell if cell.style.font_color in {utils.colors.red, 'FFFF0000'} else np.nan
sf_2 = StyleFrame(sf.applymap(only_cells_with_red_text).dropna(axis=(0, 1), how='all'))
# passing a tuple to pandas.dropna is deprecated since pandas 0.23.0, but this can be
# avoided by simply calling dropna twice, once with axis=0 and once with axis=1
print(sf_2)
# C2 C6
# 7 nan 4432.0
# 8 nan 4432.0
# 9 565.0 nan
# 10 5543.0 nan
# 11 112.0 nan
def only_cells_with_red_background(cell):
return cell if cell.style.bg_color in {utils.colors.red, 'FFFF0000'} else np.nan
sf_3 = StyleFrame(sf.applymap(only_cells_with_red_background).dropna(axis=(0, 1), how='all'))
# passing a tuple to pandas.dropna is deprecated since pandas 0.23.0, but this can be
# avoided by simply calling dropna twice, once with axis=0 and once with axis=1
print(sf_3)
# C4 C6
# 0 99.0 nan
# 1 99.0 nan
# 2 99.0 nan
# 3 99.0 nan
# 13 nan 4432.0
# 14 nan 4432.0