我有一个看起来像这样的数据框:
d = {'from': ['apple', 'banana', 'orange', 'banana', 'apple', 'orange'],
'to': ['banana', 'orange', 'apple', 'orange', 'banana', 'apple'],
'month': ['Aug-18', 'Aug-18', 'Aug-18', 'Sep-18', 'Sep-18','Sep-18']}
df = pd.DataFrame(data=d)
退出:
from to month
0 apple banana Aug-18
1 banana orange Aug-18
2 orange apple Aug-18
3 banana orange Sep-18
4 apple banana Sep-18
5 orange apple Sep-18
我有一个CSV参考表/查找表,如下所示:
product start_date end_date weight grade
apple 01/06/2018 31/08/2018 heavy a
orange 01/06/2018 31/08/2018 heavy c
banana 01/06/2018 31/08/2021 heavy b
apple 01/09/2018 31/12/2021 small a
orange 01/09/2018 31/12/2021 heavy a
注意:在参考/查找中,尺寸可能会随月份而变化。
我需要在数据框中插入4个新列,分别为:(1)from_weight,(2)to_weight,(3)from_grade(4)to_grade。然后根据时间戳将数据框中的值与参考表合并,以得到以下结果:
from to month from_weight to_weight from_grade to_grade
0 apple banana Aug-18 heavy heavy a b
1 banana orange Aug-18 heavy heavy b a
2 orange apple Aug-18 heavy heavy a a
3 banana orange Sep-18 heavy heavy b a
4 apple banana Sep-18 small heavy a b
5 orange apple Sep-18 heavy small a a
答案 0 :(得分:0)
希望这涵盖了所有情况,但仅凭所提供的示例并不能完全确定。我想“ CSV参考”总是在每月的第一天/最后一天开始/结束(否则,您必须告诉我们如何处理这些情况)。
grade.csv
:
product,start_date,end_date,weight,grade
apple,01/06/2018,31/08/2018,heavy,a
orange,01/06/2018,31/08/2021,heavy,c
banana,01/06/2018,31/08/2021,heavy,b
apple,01/09/2018,01/01/2021,small,a
orange,01/06/2018,31/08/2021,heavy,a
解决方案:
import pandas as pd
from dateutil import parser
import datetime as dt
d = {'from': ['apple', 'banana', 'orange', 'banana', 'apple', 'orange'],
'to': ['banana', 'orange', 'apple', 'orange', 'banana', 'apple'],
'month': ['Aug-18', 'Aug-18', 'Aug-18', 'Sept-18', 'Sept-18','Sept-18']}
df = pd.DataFrame(data=d, columns=list(d.keys()) + ['from_weight', 'to_weight', 'from_grade', 'to_grade'])
grade = pd.read_csv('grade.csv')
for entry in df.index:
date = parser.parse(df.loc[entry, 'month'])
for line in grade.index:
date_start = dt.datetime.strptime(grade.loc[line, 'start_date'], '%d/%m/%Y')
date_end = dt.datetime.strptime(grade.loc[line, 'end_date'], '%d/%m/%Y')
if (df.loc[entry, 'from'] == grade.loc[line, 'product']) & (date > date_start) & (date < date_end):
df.loc[entry, 'from_weight'] = grade.loc[line, 'weight']
df.loc[entry, 'from_grade'] = grade.loc[line, 'grade']
if (df.loc[entry, 'to'] == grade.loc[line, 'product']) & (date > date_start) & (date < date_end):
df.loc[entry, 'to_weight'] = grade.loc[line, 'weight']
df.loc[entry, 'to_grade'] = grade.loc[line, 'grade']
print(df)
输出:
from to month from_weight to_weight from_grade to_grade
0 apple banana Aug-18 heavy heavy a b
1 banana orange Aug-18 heavy heavy b a
2 orange apple Aug-18 heavy heavy a a
3 banana orange Sept-18 heavy heavy b a
4 apple banana Sept-18 small heavy a b
5 orange apple Sept-18 heavy small a a