我一直在尝试创建一个在shadertoy(see here, use wasd to move, arrow keys to rotate)中重复的假3D纹理,但是正如您所看到的,它不会平铺。
我自己产生了噪声,并且在this minimal example中隔离了噪声的产生,但是无论我做什么,它似乎都不会产生无缝可平铺的噪声。
代码如下:
//Common, you probably won't have to look here.
vec2 modv(vec2 value, float modvalue){
return vec2(mod(value.x, modvalue),
mod(value.y, modvalue));
}
vec3 modv(vec3 value, float modvalue){
return vec3(mod(value.x, modvalue),
mod(value.y, modvalue),
mod(value.z, modvalue));
}
vec4 modv(vec4 value, float modvalue){
return vec4(mod(value.x, modvalue),
mod(value.y, modvalue),
mod(value.z, modvalue),
mod(value.w, modvalue));
}
//MATH CONSTANTS
const float pi = 3.1415926535897932384626433832795;
const float tau = 6.2831853071795864769252867665590;
const float eta = 1.5707963267948966192313216916397;
const float SQRT3 = 1.7320508075688772935274463415059;
const float SQRT2 = 1.4142135623730950488016887242096;
const float LTE1 = 0.9999999999999999999999999999999;
const float inf = uintBitsToFloat(0x7F800000u);
#define saturate(x) clamp(x,0.0,1.0)
#define norm01(x) ((x + 1.0) / 2.0)
vec2 pos3DTo2D(in vec3 pos,
const in int size_dim,
const in ivec2 z_size){
float size_dimf = float(size_dim);
pos = vec3(mod(pos.x, size_dimf), mod(pos.y, size_dimf), mod(pos.z, size_dimf));
int z_dim_x = int(pos.z) % z_size.x;
int z_dim_y = int(pos.z) / z_size.x;
float x = pos.x + float(z_dim_x * size_dim);
float y = pos.y + float(z_dim_y * size_dim);
return vec2(x,y);
}
vec4 textureAs3D(const in sampler2D iChannel,
in vec3 pos,
const in int size_dim,
const in ivec2 z_size,
const in vec3 iResolution){
//only need whole, will do another texture read to make sure interpolated?
vec2 tex_pos = pos3DTo2D(pos, size_dim, z_size)/iResolution.xy;
vec4 base_vec4 = texture(iChannel, tex_pos);
vec2 tex_pos_z1 = pos3DTo2D(pos+vec3(0.0,0.0,1.0), size_dim, z_size.xy)/iResolution.xy;
vec4 base_vec4_z1 = texture(iChannel, tex_pos_z1);
//return base_vec4;
return mix(base_vec4, base_vec4_z1, fract(pos.z));
}
vec4 textureZ3D(const in sampler2D iChannel,
in int y,
in int z,
in int offsetX,
const in int size_dim,
const in ivec2 z_size,
const in vec3 iResolution){
int tx = (z%z_size.x);
int ty = z/z_size.x;
int sx = offsetX + size_dim * tx;
int sy = y + (ty *size_dim);
if(ty < z_size.y){
return texelFetch(iChannel, ivec2(sx, sy),0);
}else{
return vec4(0.0);
}
//return texelFetch(iChannel, ivec2(x, y - (ty *32)),0);
}
//Buffer B this is what you are going to have to look at.
//noise
//NOISE CONSTANTS
// captured from https://en.wikipedia.org/wiki/SHA-2#Pseudocode
const uint CONST_A = 0xcc9e2d51u;
const uint CONST_B = 0x1b873593u;
const uint CONST_C = 0x85ebca6bu;
const uint CONST_D = 0xc2b2ae35u;
const uint CONST_E = 0xe6546b64u;
const uint CONST_F = 0x510e527fu;
const uint CONST_G = 0x923f82a4u;
const uint CONST_H = 0x14292967u;
const uint CONST_0 = 4294967291u;
const uint CONST_1 = 604807628u;
const uint CONST_2 = 2146583651u;
const uint CONST_3 = 1072842857u;
const uint CONST_4 = 1396182291u;
const uint CONST_5 = 2227730452u;
const uint CONST_6 = 3329325298u;
const uint CONST_7 = 3624381080u;
uvec3 singleHash(uvec3 uval){
uval ^= uval >> 16;
uval.x *= CONST_A;
uval.y *= CONST_B;
uval.z *= CONST_C;
return uval;
}
uint combineHash(uint seed, uvec3 uval){
// can move this out to compile time if need be.
// with out multiplying by one of the randomizing constants
// will result in not very different results from seed to seed.
uint un = seed * CONST_5;
un ^= (uval.x^uval.y)* CONST_0;
un ^= (un >> 16);
un = (un^uval.z)*CONST_1;
un ^= (un >> 16);
return un;
}
/*
//what the above hashes are based upon, seperate
//out this mumurhash based coherent noise hash
uint fullHash(uint seed, uvec3 uval){
uval ^= uval >> 16;
uval.x *= CONST_A;
uval.y *= CONST_B;
uval.z *= CONST_D;
uint un = seed * CONST_6;
un ^= (uval.x ^ uval.y) * CONST_0;
un ^= un >> 16;
un = (un^uval.z) * CONST_2;
un ^= un >> 16;
return un;
}
*/
const vec3 gradArray3d[8] = vec3[8](
vec3(1, 1, 1), vec3(1,-1, 1), vec3(-1, 1, 1), vec3(-1,-1, 1),
vec3(1, 1,-1), vec3(1,-1,-1), vec3(-1, 1,-1), vec3(-1,-1,-1)
);
vec3 getGradient3Old(uint uval){
vec3 grad = gradArray3d[uval & 7u];
return grad;
}
//source of some constants
//https://github.com/Auburns/FastNoise/blob/master/FastNoise.cpp
const float SKEW3D = 1.0 / 3.0;
const float UNSKEW3D = 1.0 / 6.0;
const float FAR_CORNER_UNSKEW3D = -1.0 + 3.0*UNSKEW3D;
const float NORMALIZE_SCALE3D = 30.0;// * SQRT3;
const float DISTCONST_3D = 0.6;
float simplexNoiseV(uint seed, in vec3 pos, in uint wrap){
pos = modv(pos, float(wrap));
float skew_factor = (pos.x + pos.y + pos.z)*SKEW3D;
vec3 fsimplex_corner0 = floor(pos + skew_factor);
ivec3 simplex_corner0 = ivec3(fsimplex_corner0);
float unskew_factor = (fsimplex_corner0.x + fsimplex_corner0.y + fsimplex_corner0.z) * UNSKEW3D;
vec3 pos0 = fsimplex_corner0 - unskew_factor;
//subpos's are positions with in grid cell.
vec3 subpos0 = pos - pos0;
//precomputed values used in determining hash, reduces redundant hash computation
//shows 10% -> 20% speed boost.
uvec3 wrapped_corner0 = uvec3(simplex_corner0);
uvec3 wrapped_corner1 = uvec3(simplex_corner0+1);
wrapped_corner0 = wrapped_corner0 % wrap;
wrapped_corner1 = wrapped_corner1 % wrap;
//uvec3 hashes_offset0 = singleHash(uvec3(simplex_corner0));
//uvec3 hashes_offset1 = singleHash(uvec3(simplex_corner0+1));
uvec3 hashes_offset0 = singleHash(wrapped_corner0);
uvec3 hashes_offset1 = singleHash(wrapped_corner1);
//near corner hash value
uint hashval0 = combineHash(seed, hashes_offset0);
//mid corner hash value
uint hashval1;
uint hashval2;
//far corner hash value
uint hashval3 = combineHash(seed, hashes_offset1);
ivec3 simplex_corner1;
ivec3 simplex_corner2;
if (subpos0.x >= subpos0.y)
{
if (subpos0.y >= subpos0.z)
{
hashval1 = combineHash(seed, uvec3(hashes_offset1.x, hashes_offset0.yz));
hashval2 = combineHash(seed, uvec3(hashes_offset1.xy, hashes_offset0.z));
simplex_corner1 = ivec3(1,0,0);
simplex_corner2 = ivec3(1,1,0);
}
else if (subpos0.x >= subpos0.z)
{
hashval1 = combineHash(seed, uvec3(hashes_offset1.x, hashes_offset0.yz));
hashval2 = combineHash(seed, uvec3(hashes_offset1.x, hashes_offset0.y, hashes_offset1.z));
simplex_corner1 = ivec3(1,0,0);
simplex_corner2 = ivec3(1,0,1);
}
else // subpos0.x < subpos0.z
{
hashval1 = combineHash(seed, uvec3(hashes_offset0.xy, hashes_offset1.z));
hashval2 = combineHash(seed, uvec3(hashes_offset1.x, hashes_offset0.y, hashes_offset1.z));
simplex_corner1 = ivec3(0,0,1);
simplex_corner2 = ivec3(1,0,1);
}
}
else // subpos0.x < subpos0.y
{
if (subpos0.y < subpos0.z)
{
hashval1 = combineHash(seed, uvec3(hashes_offset0.xy, hashes_offset1.z));
hashval2 = combineHash(seed, uvec3(hashes_offset0.x, hashes_offset1.yz));
simplex_corner1 = ivec3(0,0,1);
simplex_corner2 = ivec3(0,1,1);
}
else if (subpos0.x < subpos0.z)
{
hashval1 = combineHash(seed, uvec3(hashes_offset0.x, hashes_offset1.y, hashes_offset0.z));
hashval2 = combineHash(seed, uvec3(hashes_offset0.x, hashes_offset1.yz));
simplex_corner1 = ivec3(0,1,0);
simplex_corner2 = ivec3(0,1,1);
}
else // subpos0.x >= subpos0.z
{
hashval1 = combineHash(seed, uvec3(hashes_offset0.x, hashes_offset1.y, hashes_offset0.z));
hashval2 = combineHash(seed, uvec3(hashes_offset1.xy, hashes_offset0.z));
simplex_corner1 = ivec3(0,1,0);
simplex_corner2 = ivec3(1,1,0);
}
}
//we would do this if we didn't want to seperate the hash values.
//hashval0 = fullHash(seed, uvec3(simplex_corner0));
//hashval1 = fullHash(seed, uvec3(simplex_corner0+simplex_corner1));
//hashval2 = fullHash(seed, uvec3(simplex_corner0+simplex_corner2));
//hashval3 = fullHash(seed, uvec3(simplex_corner0+1));
vec3 subpos1 = subpos0 - vec3(simplex_corner1) + UNSKEW3D;
vec3 subpos2 = subpos0 - vec3(simplex_corner2) + 2.0*UNSKEW3D;
vec3 subpos3 = subpos0 + FAR_CORNER_UNSKEW3D;
float n0, n1, n2, n3;
//http://catlikecoding.com/unity/tutorials/simplex-noise/
//circle distance factor to make sure second derivative is continuous
// t variables represent (1 - x^2 + y^2 + ...)^3, a distance function with
// continous first and second derivatives that are zero when x is one.
float t0 = DISTCONST_3D - subpos0.x*subpos0.x - subpos0.y*subpos0.y - subpos0.z*subpos0.z;
//if t < 0, we get odd dips in continuity at the ends, so we just force it to zero
// to prevent it
if(t0 < 0.0){
n0 = 0.0;
}else{
float t0_pow2 = t0 * t0;
float t0_pow4 = t0_pow2 * t0_pow2;
vec3 grad = getGradient3Old(hashval0);
float product = dot(subpos0, grad);
n0 = t0_pow4 * product;
}
float t1 = DISTCONST_3D - subpos1.x*subpos1.x - subpos1.y*subpos1.y - subpos1.z*subpos1.z;
if(t1 < 0.0){
n1 = 0.0;
}else{
float t1_pow2 = t1 * t1;
float t1_pow4 = t1_pow2 * t1_pow2;
vec3 grad = getGradient3Old(hashval1);
float product = dot(subpos1, grad);
n1 = t1_pow4 * product;
}
float t2 = DISTCONST_3D - subpos2.x*subpos2.x - subpos2.y*subpos2.y - subpos2.z*subpos2.z;
if(t2 < 0.0){
n2 = 0.0;
}else{
float t2_pow2 = t2 * t2;
float t2_pow4 = t2_pow2*t2_pow2;
vec3 grad = getGradient3Old(hashval2);
float product = dot(subpos2, grad);
n2 = t2_pow4 * product;
}
float t3 = DISTCONST_3D - subpos3.x*subpos3.x - subpos3.y*subpos3.y - subpos3.z*subpos3.z;
if(t3 < 0.0){
n3 = 0.0;
}else{
float t3_pow2 = t3 * t3;
float t3_pow4 = t3_pow2*t3_pow2;
vec3 grad = getGradient3Old(hashval3);
float product = dot(subpos3, grad);
n3 = t3_pow4 * product;
}
return (n0 + n1 + n2 + n3);
}
//settings for fractal brownian motion noise
struct BrownianFractalSettings{
uint seed;
int octave_count;
float frequency;
float lacunarity;
float persistence;
float amplitude;
};
float accumulateSimplexNoiseV(in BrownianFractalSettings settings, vec3 pos, float wrap){
float accumulated_noise = 0.0;
wrap *= settings.frequency;
vec3 octave_pos = pos * settings.frequency;
for (int octave = 0; octave < settings.octave_count; octave++) {
octave_pos = modv(octave_pos, wrap);
float noise = simplexNoiseV(settings.seed, octave_pos, uint(wrap));
noise *= pow(settings.persistence, float(octave));
accumulated_noise += noise;
octave_pos *= settings.lacunarity;
wrap *= settings.lacunarity;
}
float scale = 2.0 - pow(settings.persistence, float(settings.octave_count - 1));
return (accumulated_noise/scale) * NORMALIZE_SCALE3D * settings.amplitude;
}
const float FREQUENCY = 1.0/8.0;
const float WRAP = 32.0;
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
//set to zero in order to stop scrolling, scrolling shows the lack of tilability between
//wrapping.
const float use_sin_debug = 1.0;
vec3 origin = vec3(norm01(sin(iTime))*64.0*use_sin_debug,0.0,0.0);
vec3 color = vec3(0.0,0.0,0.0);
BrownianFractalSettings brn_settings =
BrownianFractalSettings(203u, 1, FREQUENCY, 2.0, 0.4, 1.0);
const int size_dim = 32;
ivec2 z_size = ivec2(8, 4);
ivec2 iFragCoord = ivec2(fragCoord.x, fragCoord.y);
int z_dim_x = iFragCoord.x / size_dim;
int z_dim_y = iFragCoord.y / size_dim;
if(z_dim_x < z_size.x && z_dim_y < z_size.y){
int ix = iFragCoord.x % size_dim;
int iy = iFragCoord.y % size_dim;
int iz = (z_dim_x) + ((z_dim_y)*z_size.x);
vec3 pos = vec3(ix,iy,iz) + origin;
float value = accumulateSimplexNoiseV(brn_settings, pos, WRAP);
color = vec3(norm01(value));
}else{
color = vec3(1.0,0.0,0.0);
}
fragColor = vec4(color,1.0);
}
//Image, used to finally display
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
const float fcm = 4.0;
//grabs a single 32x32 tile in order to test tileability, currently generates
//a whole array of images however.
vec2 fragCoordMod = vec2(mod(fragCoord.x, 32.0 * fcm), mod(fragCoord.y, 32.0 * fcm));
vec3 color = texture(iChannel2, fragCoordMod/(fcm*iResolution.xy)).xyz;
fragColor = vec4(color, 1.0);
}
我尝试定位%包装值,通过隐秘修改包装值以及在当前使用的扭曲%包装值之后进行的操作(在simplexNoiseV
中查找核心算法,在accumulateSimplexNoiseV
中查找八度总和)。
根据these answers,应该就是这么简单(用于散列的mod位置),但是显然这是行不通的。我不确定这是否部分是因为我的哈希函数不是Ken Perlin的哈希函数,但似乎并没有什么不同。似乎坐标的倾斜应该使该方法根本不起作用,但是显然其他人已经成功了。
为什么换行坐标不能使我的单面噪声平铺无缝?
更新:
我仍然没有解决该问题,但似乎在简化程序中[]拼贴工作正常,而不是此处看到的网格:
我必须修改我的模数以解决偏斜吗?