初始化SparkContext --master纱线时出错

时间:2018-08-31 13:58:35

标签: java apache-spark hadoop yarn

首先,我尝试使用以下命令在纱线群集上部署Spark Java应用程序:

spark-submit --master yarn  --class com.batchjob.BatchJob D:\batchjob-0.0.1-SNAPSHOT-shaded.jar

我的Java代码:

public class BatchJob {

    public static void main(String[] args) throws IOException {

        // get spark confgiruation
        SparkConf sparkConf = new SparkConf().setAppName("Example Spark App");//.setMaster("local");

        // setup spark session to be able to work with Dataset
        SparkSession spark = SparkSession.builder().config(sparkConf).getOrCreate();

        // import data
        Dataset<Row> input = spark.read().csv("hdfs://localhost:9000/input_dir/data.csv");
        input.show();

        // map to Dataset of Activity
        Dataset<Activity> activityDataset = input.map((row) -> {
            if (row.size() != 8)
                throw new RuntimeException("Row must have size of 8!");
            return new Activity(Long.parseLong(row.getString(0)), row.getString(1), row.getString(2), row.getString(3),
                    row.getString(4), row.getString(5), row.getString(6), row.getString(7));
        }, Encoders.bean(Activity.class));

        /*
         * Actions & Transformations
         */
        activityDataset.createOrReplaceTempView("activity");
        Dataset<Row> sqlResult = spark.sql("SELECT  " + "product, timestamp, referrer, "
                + "SUM( CASE WHEN action = 'page_view' THEN 1 ELSE 0 END) AS page_view_count, "
                + "SUM( CASE WHEN action = 'add_to_cart' THEN 1 ELSE 0 END) AS add_to_cart_count, "
                + "SUM( CASE WHEN action = 'purchase' THEN 1 ELSE 0 END) AS purchase_count " + "FROM activity "
                + "GROUP BY product, timestamp, referrer").cache();
        sqlResult.write().partitionBy("referrer").mode(SaveMode.Append).parquet("hdfs://localhost:9000/lambda/batch1");

        spark.close(); 
    }
}

和我的 pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com</groupId>
    <artifactId>batchjob</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>batchjob</name>
    <url>http://maven.apache.org</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.3.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.3.1</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <shadedArtifactAttached>true</shadedArtifactAttached>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <artifactSet>
                                <includes>
                                    <include>*:*</include>
                                </includes>
                            </artifactSet>
                            <transformers>
                                <transformer
                                    implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                                    <resource>reference.conf</resource>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>

        </plugins>
        <resources>
            <resource>
                <directory>.</directory>
                <includes>
                    <include>src/main/resources/*.*</include>
                </includes>
            </resource>
        </resources>
    </build>
</project>

使用命令.\HADOOP_HOME\sbin\start-yarn.cmd和使用命令.\HADOOP_HOME\sbin\start-dfs.cmd的节点启动纱线群集。 注意:我在Windows 10上!

出于测试目的,如果我在本地运行,一切都很好,我可以在http://localhost:9870/explorer.html#/上看到代码的结果。

当我尝试让纱线决定如何管理Java Spark应用程序时,使用 yarn 代替本地,而我面临下一个错误:

2018-08-31 16:32:00 INFO  Client:54 - Deleted staging directory file:/C:/Users/razvan.parautiu/.sparkStaging/application_1535721878844_0003
2018-08-31 16:32:00 ERROR SparkContext:91 - Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
        at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:933)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:924)
        at scala.Option.getOrElse(Option.scala:121)
        at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:924)
        at com.batchjob.BatchJob.main(BatchJob.java:33)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

我检查了其他具有相同错误的帖子,但不幸的是无法正常工作...

0 个答案:

没有答案