尊敬的Elasticsearch专家,
我在查询嵌套对象时遇到问题。让我们使用以下简化的映射:
{
"mappings" : {
"_doc" : {
"properties" : {
"companies" : {
"type": "nested",
"properties" : {
"company_id": { "type": "long" },
"name": { "type": "text" }
}
},
"title": { "type": "text" }
}
}
}
}
并在索引中放入一些文档:
PUT my_index/_doc/1
{
"title" : "CPU release",
"companies" : [
{ "company_id" : 1, "name" : "AMD" },
{ "company_id" : 2, "name" : "Intel" }
]
}
PUT my_index/_doc/2
{
"title" : "GPU release 2018-01-10",
"companies" : [
{ "company_id" : 1, "name" : "AMD" },
{ "company_id" : 3, "name" : "Nvidia" }
]
}
PUT my_index/_doc/3
{
"title" : "GPU release 2018-03-01",
"companies" : [
{ "company_id" : 3, "name" : "Nvidia" }
]
}
PUT my_index/_doc/4
{
"title" : "Chipset release",
"companies" : [
{ "company_id" : 2, "name" : "Intel" }
]
}
现在我要执行这样的查询:
{
"query": {
"bool": {
"must": [
{ "match": { "title": "GPU" } },
{ "nested": {
"path": "companies",
"query": {
"bool": {
"must": [
{ "match": { "companies.name": "AMD" } }
]
}
},
"inner_hits" : {}
}
}
]
}
}
}
因此,我想获取具有匹配文档数量的匹配公司。所以上面的查询应该给我:
[
{ "company_id" : 1, "name" : "AMD", "matched_documents:": 1 }
]
以下查询:
{
"query": {
"bool": {
"must": [
{ "match": { "title": "GPU" } }
{ "nested": {
"path": "companies",
"query": { "match_all": {} },
"inner_hits" : {}
}
}
]
}
}
}
应该给我所有分配给文档的公司,该公司的标题包含“ GPU”以及匹配的文档数量:
[
{ "company_id" : 1, "name" : "AMD", "matched_documents:": 1 },
{ "company_id" : 3, "name" : "Nvidia", "matched_documents:": 2 }
]
是否有可能具有良好的性能来达到此结果?我显然对匹配的文档不感兴趣,只对匹配的文档和嵌套对象的数量不感兴趣。
感谢您的帮助。
答案 0 :(得分:0)
就Elasticsearch而言,您需要做的是:
GPU
中有title
或在Nvidia
列表中提到companies
)来过滤“父”文档; company_id
)将“嵌套”文档分组; 数组中的每个nested
对象都是indexed as a separate hidden document,这使生活变得有些复杂。让我们看看如何汇总它们。
nested
个文档呢?您可以结合使用nested,terms和top_hits聚合来实现此目的:
POST my_index/doc/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"title": "GPU"
}
},
{
"nested": {
"path": "companies",
"query": {
"match_all": {}
}
}
}
]
}
},
"aggs": {
"Extract nested": {
"nested": {
"path": "companies"
},
"aggs": {
"By company id": {
"terms": {
"field": "companies.company_id"
},
"aggs": {
"Examples of such company_id": {
"top_hits": {
"size": 1
}
}
}
}
}
}
}
}
这将给出以下输出:
{
...
"hits": { ... },
"aggregations": {
"Extract nested": {
"doc_count": 4, <== How many "nested" documents there were?
"By company id": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 3, <== this bucket's key: "company_id": 3
"doc_count": 2, <== how many "nested" documents there were with such company_id?
"Examples of such company_id": {
"hits": {
"total": 2,
"max_score": 1.5897496,
"hits": [ <== an example, "top hit" for such company_id
{
"_nested": {
"field": "companies",
"offset": 1
},
"_score": 1.5897496,
"_source": {
"company_id": 3,
"name": "Nvidia"
}
}
]
}
}
},
{
"key": 1,
"doc_count": 1,
"Examples of such company_id": {
"hits": {
"total": 1,
"max_score": 1.5897496,
"hits": [
{
"_nested": {
"field": "companies",
"offset": 0
},
"_score": 1.5897496,
"_source": {
"company_id": 1,
"name": "AMD"
}
}
]
}
}
}
]
}
}
}
}
请注意,Nvidia
有"doc_count": 2
。
但是,如果我们要计算拥有Nvidia
和Intel
的“父”对象的数量怎么办?
nested
存储桶对父对象进行计数怎么办?可以通过reverse_nested
聚合来实现。
我们只需要稍微更改一下查询:
POST my_index/doc/_search
{
"query": { ... },
"aggs": {
"Extract nested": {
"nested": {
"path": "companies"
},
"aggs": {
"By company id": {
"terms": {
"field": "companies.company_id"
},
"aggs": {
"Examples of such company_id": {
"top_hits": {
"size": 1
}
},
"original doc count": { <== we ask ES to count how many there are parent docs
"reverse_nested": {}
}
}
}
}
}
}
}
结果将如下所示:
{
...
"hits": { ... },
"aggregations": {
"Extract nested": {
"doc_count": 3,
"By company id": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 3,
"doc_count": 2,
"original doc count": {
"doc_count": 2 <== how many "parent" documents have such company_id
},
"Examples of such company_id": {
"hits": {
"total": 2,
"max_score": 1.5897496,
"hits": [
{
"_nested": {
"field": "companies",
"offset": 1
},
"_score": 1.5897496,
"_source": {
"company_id": 3,
"name": "Nvidia"
}
}
]
}
}
},
{
"key": 1,
"doc_count": 1,
"original doc count": {
"doc_count": 1
},
"Examples of such company_id": {
"hits": {
"total": 1,
"max_score": 1.5897496,
"hits": [
{
"_nested": {
"field": "companies",
"offset": 0
},
"_score": 1.5897496,
"_source": {
"company_id": 1,
"name": "AMD"
}
}
]
}
}
}
]
}
}
}
}
为使区别变得明显,让我们稍微更改一下数据,然后在文档列表中添加另一个Nvidia
项:
PUT my_index/doc/2
{
"title" : "GPU release 2018-01-10",
"companies" : [
{ "company_id" : 1, "name" : "AMD" },
{ "company_id" : 3, "name" : "Nvidia" },
{ "company_id" : 3, "name" : "Nvidia" }
]
}
最后一个查询(带有reverse_nested
的查询)将为我们提供以下信息:
"By company id": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 3,
"doc_count": 3, <== 3 "nested" documents with Nvidia
"original doc count": {
"doc_count": 2 <== but only 2 "parent" documents
},
"Examples of such company_id": {
"hits": {
"total": 3,
"max_score": 1.5897496,
"hits": [
{
"_nested": {
"field": "companies",
"offset": 2
},
"_score": 1.5897496,
"_source": {
"company_id": 3,
"name": "Nvidia"
}
}
]
}
}
},
如您所见,这是一个难以理解的细微差别,但它完全改变了语义。
尽管在大多数情况下,nested
查询和聚合的性能应该足够,但是当然要付出一定的代价。因此,建议在tuning for search speed时避免使用nested
或父子类型。
在Elasticsearch中,尽管没有单一的配方,但通常可以通过denormalization来获得最佳性能。
希望这可以为您澄清一下nested
这件事!