如何找到嘈杂二价矩阵的最佳重叠

时间:2011-03-06 15:13:13

标签: algorithm image-processing random matrix alignment

我正在处理一个图像处理问题,我已将其简化如下。我有三个10x10矩阵,每个矩阵的值在每个单元格中为1或-1。每个矩阵都有一个位于某处的不规则物体,矩阵中有一些噪声。我想弄清楚如何找到矩阵的最佳对齐方式,让我排列对象,这样我就能得到它们的平均值。

使用1 / -1编码,我知道两个矩阵的乘积(使用逐元素乘法,而不是矩阵乘法)如果两个乘法单元格之间存在匹配则将产生1,如果存在不匹配,则产生-1因此,产品的总和产生重叠的量度。有了这个,我知道我可以尝试两个矩阵的所有可能的对齐来找到产生最佳重叠的那个,但是我不知道如何用3个矩阵(或者更多 - 我的实际数据中有20个以上)设定)。

为了帮助澄清问题,这里有一些用R编写的代码,用于设置我正在处理的那种基质:

#set up the 3 matricies
m1 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m1 = matrix(m1,10)

m2 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m2 = matrix(m2,10)

m3 = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
m3 = matrix(m3,10)

#show the matricies
image(m1)
image(m2)
image(m3)
#notice there's a "+" shaped object in each

#create noise
set.seed(1)
n1 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n1 = matrix(n1,10)
n2 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n2 = matrix(n2,10)
n3 = sample(c(1,-1),100,replace=T,prob=c(.95,.05))
n3 = matrix(n3,10)

#add noise to the matricies
mn1 = m1*n1
mn2 = m2*n2
mn3 = m3*n3

#show the noisy matricies
image(mn1)
image(mn2)
image(mn3)

1 个答案:

答案 0 :(得分:1)

这是Mathematica中的一个程序,可以满足您的需求(我认为)。

如果需要,我可以更详细地解释一下。

(*define temp tables*)
r = m = Table[{}, {100}];
(*define noise function*)
noise := Partition[RandomVariate[BinomialDistribution[1, .05], 100], 
   10];
For[i = 1, i <= 100, i++,
 (*generate 100 10x10 matrices with the random cross and noise added*)
 w = RandomInteger[6]; h = w = RandomInteger[6];
 m[[i]] = (ArrayPad[CrossMatrix[4, 4], {{w, 6 - w}, {h, 6 - h}}] + 
     noise) /. 2 -> 1;

 (*Select connected components in each matrix and keep only the biggest*)
 id = Last@
   Commonest[
    Flatten@(mf = 
       MorphologicalComponents[m[[i]], CornerNeighbors -> False]), 2];
 d = mf /. {id -> x, x_Integer -> 0} /. {x -> 1};
 {minX, maxX, minY, maxY} =
  {Min@Thread[g[#]] /. g -> First,
     Max@Thread[g[#]] /. g -> First,
     Min@Thread[g[#]] /. g -> Last,
     Max@Thread[g[#]] /. g -> Last} &@Position[d, 1];

 (*Trim the image of the biggest component *)
 r[[i]] = d[[minX ;; maxX, minY ;; maxY]];
 ]
(*As the noise is low, the more repeated component is the image*)
MatrixPlot @@ Commonest@r  

结果:

enter image description here