我已经编写了一个代码,该代码使用NLTK从文本输入中计算出二元/三元组频率。我在这里面临的问题是,因为输出是以Python列表的形式获得的,所以我的输出包含列表特定的字符,即(“()”,“'”,“,”)。我计划将其导出到一个csv文件中,因此我想在代码级别本身上删除这些特殊字符。我该如何进行编辑。
输入代码:
import nltk
from nltk import word_tokenize, pos_tag
from nltk.collocations import *
from itertools import *
from nltk.util import ngrams
from nltk.corpus import stopwords
corpus = '''The pure amnesia of her face,
newborn. I looked so far into her that, for a while, looked so far into her that, for a while looked so far into her that, for a while looked so far into her that, for a while the visual
held no memory. Little by little, I returned to myself, waking to nurse the visual held no memory. Little by little, I returned to myself, waking to nurse
'''
s_corpus = corpus.lower()
stop_words = set(stopwords.words('english'))
tokens = nltk.word_tokenize(s_corpus)
tokens = [word for word in tokens if word not in stop_words]
c_tokens = [''.join(e for e in string if e.isalnum()) for string in tokens]
c_tokens = [x for x in c_tokens if x]
bgs_2 = nltk.bigrams(c_tokens)
bgs_3 = nltk.trigrams(c_tokens)
fdist = nltk.FreqDist(bgs_3)
tmp = list()
for k,v in fdist.items():
tmp.append((v,k))
tmp = sorted (tmp, reverse=True)
for kk,vv in tmp[:]:
print (vv,kk)
当前输出:
('looked', 'far', 'looked') 3
('far', 'looked', 'far') 3
('visual', 'held', 'memory') 2
('returned', 'waking', 'nurse') 2
预期输出:
looked far looked, 3
far looked far, 3
visual held memory, 2
returned waking nurse, 2
谢谢您的帮助。
答案 0 :(得分:2)
一个更好的问题是 ngrams输出中的("()", "'",",")
是什么?
>>> from nltk import ngrams
>>> from nltk import word_tokenize
# Split a sentence into a list of "words"
>>> word_tokenize("This is a foo bar sentence")
['This', 'is', 'a', 'foo', 'bar', 'sentence']
>>> type(word_tokenize("This is a foo bar sentence"))
<class 'list'>
# Extract bigrams.
>>> list(ngrams(word_tokenize("This is a foo bar sentence"), 2))
[('This', 'is'), ('is', 'a'), ('a', 'foo'), ('foo', 'bar'), ('bar', 'sentence')]
# Okay, so the output is a list, no surprise.
>>> type(list(ngrams(word_tokenize("This is a foo bar sentence"), 2)))
<class 'list'>
但是('This', 'is')
是什么类型?
>>> list(ngrams(word_tokenize("This is a foo bar sentence"), 2))[0]
('This', 'is')
>>> first_thing_in_output = list(ngrams(word_tokenize("This is a foo bar sentence"), 2))[0]
>>> type(first_thing_in_output)
<class 'tuple'>
啊,这是一个元组,请参见https://realpython.com/python-lists-tuples/
打印元组时会发生什么?
>>> print(first_thing_in_output)
('This', 'is')
如果将它们转换为str()
会怎样?
>>> print(str(first_thing_in_output))
('This', 'is')
但是我希望输出This is
而不是('This', 'is')
,所以我将使用str.join()
函数,请参见https://www.geeksforgeeks.org/join-function-python/:
>>> print(' '.join((first_thing_in_output)))
This is
现在,这是真正通过the tutorial of basic Python types来了解正在发生的事情的好方法。此外,最好了解“容器”类型的工作原理,例如https://github.com/usaarhat/pywarmups/blob/master/session2.md
在原始帖子中,代码存在很多问题。
我想代码的目标是:
棘手的部分是stopwords.words('english')
不包含标点符号,因此您最终会得到包含标点符号的奇怪ngram:
from nltk import word_tokenize
from nltk.util import ngrams
from nltk.corpus import stopwords
text = '''The pure amnesia of her face,
newborn. I looked so far into her that, for a while, looked so far into her that, for a while looked so far into her that, for a while looked so far into her that, for a while the visual
held no memory. Little by little, I returned to myself, waking to nurse the visual held no memory. Little by little, I returned to myself, waking to nurse
'''
stoplist = set(stopwords.words('english'))
tokens = [token for token in nltk.word_tokenize(text) if token not in stoplist]
list(ngrams(tokens, 2))
[输出]:
[('The', 'pure'),
('pure', 'amnesia'),
('amnesia', 'face'),
('face', ','),
(',', 'newborn'),
('newborn', '.'),
('.', 'I'),
('I', 'looked'),
('looked', 'far'),
('far', ','),
(',', ','), ...]
也许您想使用标点符号来扩展非索引字表,例如
from string import punctuation
from nltk import word_tokenize
from nltk.util import ngrams
from nltk.corpus import stopwords
text = '''The pure amnesia of her face,
newborn. I looked so far into her that, for a while, looked so far into her that, for a while looked so far into her that, for a while looked so far into her that, for a while the visual
held no memory. Little by little, I returned to myself, waking to nurse the visual held no memory. Little by little, I returned to myself, waking to nurse
'''
stoplist = set(stopwords.words('english') + list(punctuation))
tokens = [token for token in nltk.word_tokenize(text) if token not in stoplist]
list(ngrams(tokens, 2))
[输出]:
[('The', 'pure'),
('pure', 'amnesia'),
('amnesia', 'face'),
('face', 'newborn'),
('newborn', 'I'),
('I', 'looked'),
('looked', 'far'),
('far', 'looked'),
('looked', 'far'), ...]
然后您意识到诸如I
之类的标记应为停用词,但仍存在于ngram列表中。这是因为stopwords.words('english')
中的列表是小写的,例如
>>> stopwords.words('english')
[输出]:
['i',
'me',
'my',
'myself',
'we',
'our',
'ours',
'ourselves',
'you',
"you're", ...]
因此,当您检查令牌是否在非索引字表中时,还应该将令牌小写。 (避免将word_tokenize
之前的句子缩小写,因为word_tokenize
可能会从大写字母中得到提示)。因此:
from string import punctuation
from nltk import word_tokenize
from nltk.util import ngrams
from nltk.corpus import stopwords
text = '''The pure amnesia of her face,
newborn. I looked so far into her that, for a while, looked so far into her that, for a while looked so far into her that, for a while looked so far into her that, for a while the visual
held no memory. Little by little, I returned to myself, waking to nurse the visual held no memory. Little by little, I returned to myself, waking to nurse
'''
stoplist = set(stopwords.words('english') + list(punctuation))
tokens = [token for token in nltk.word_tokenize(text) if token.lower() not in stoplist]
list(ngrams(tokens, 2))
[输出]:
[('pure', 'amnesia'),
('amnesia', 'face'),
('face', 'newborn'),
('newborn', 'looked'),
('looked', 'far'),
('far', 'looked'),
('looked', 'far'),
('far', 'looked'),
('looked', 'far'),
('far', 'looked'), ...]
现在ngram看起来已经实现了目标:
然后在您要按顺序将ngram输出到文件的最后一部分上,您实际上可以使用Freqdist.most_common()
,该字母将以降序排列,例如
from string import punctuation
from nltk import word_tokenize
from nltk.util import ngrams
from nltk.corpus import stopwords
from nltk import FreqDist
text = '''The pure amnesia of her face,
newborn. I looked so far into her that, for a while, looked so far into her that, for a while looked so far into her that, for a while looked so far into her that, for a while the visual
held no memory. Little by little, I returned to myself, waking to nurse the visual held no memory. Little by little, I returned to myself, waking to nurse
'''
stoplist = set(stopwords.words('english') + list(punctuation))
tokens = [token for token in nltk.word_tokenize(text) if token.lower() not in stoplist]
FreqDist(ngrams(tokens, 2)).most_common()
[输出]:
[(('looked', 'far'), 4),
(('far', 'looked'), 3),
(('visual', 'held'), 2),
(('held', 'memory'), 2),
(('memory', 'Little'), 2),
(('Little', 'little'), 2),
(('little', 'returned'), 2),
(('returned', 'waking'), 2),
(('waking', 'nurse'), 2),
(('pure', 'amnesia'), 1),
(('amnesia', 'face'), 1),
(('face', 'newborn'), 1),
(('newborn', 'looked'), 1),
(('far', 'visual'), 1),
(('nurse', 'visual'), 1)]
(另请参见:Difference between Python's collections.Counter and nltk.probability.FreqDist)
最后,将其打印到文件中,您实际上应该使用上下文管理器http://eigenhombre.com/introduction-to-context-managers-in-python.html
with open('bigrams-list.tsv', 'w') as fout:
for bg, count in FreqDist(ngrams(tokens, 2)).most_common():
print('\t'.join([' '.join(bg), str(count)]), end='\n', file=fout)
[bigrams-list.tsv]:
looked far 4
far looked 3
visual held 2
held memory 2
memory Little 2
Little little 2
little returned 2
returned waking 2
waking nurse 2
pure amnesia 1
amnesia face 1
face newborn 1
newborn looked 1
far visual 1
nurse visual 1
现在您看到了这个奇怪的二元组Little little
,有意义吗?
这是从
中删除by
的副产品
一点一点
因此,现在,根据您提取的ngram的最终任务是什么,您可能真的不想从列表中删除停用词。
答案 1 :(得分:0)
因此,只需“修复”您的输出: 使用它来打印数据:
for kk,vv in tmp:
print(" ".join(list(kk)),",%d" % vv)
但,如果要将其解析为csv,则应以其他格式收集输出。
当前,您正在创建包含列表和编号的列表。 尝试将数据收集为包含每个值的列表的列表。 这样,您就可以直接将其写入csv文件。