给出纵向数据,我如何计算矩阵,其中每一列代表给定变量的加权按组平均值?
我已经开发了一种需要循环的方法,而且速度太慢。我认为这可能可以向量化,但是解决方案使我难以理解。
这是我目前的做法:
var myArray= [];
for (var i = 0; i < myJson.length; i++) {
myArray.push({
id: myJson[i].id,
name: myJson[i].name,
});
}
最初,我尝试使用Array(2)
0:{id: "1", name: "steve"}
1:{id: "2", name: "adam"}
来执行此操作,但它给我的输出是错误的!
library(foreach)
# N is sample size
# g is the number of groups
# p is the number of variables
get_group_mean_matrix <- function(N, g, p){
X <- matrix(rbinom(N*p, 10, .5), N)
f <- sort((1:(N)) %% g + 1)
w <- runif(N)
dmmat <- foreach(i = unique(f), .combine = rbind) %do% {
idx <- which(f == i)
ws <- w[idx]/sum(w[idx])
t((t(X[idx,]) %*% ws)) %x% rep(1, length(idx))
}
dmmat
}
> set.seed(666)
> get_group_mean_matrix(12, 3, 5)
[,1] [,2] [,3] [,4] [,5]
[1,] 5.261103 4.074266 5.828070 4.452703 5.990165
[2,] 5.261103 4.074266 5.828070 4.452703 5.990165
[3,] 5.261103 4.074266 5.828070 4.452703 5.990165
[4,] 5.261103 4.074266 5.828070 4.452703 5.990165
[5,] 5.560556 4.241942 3.698828 5.572523 4.212532
[6,] 5.560556 4.241942 3.698828 5.572523 4.212532
[7,] 5.560556 4.241942 3.698828 5.572523 4.212532
[8,] 5.560556 4.241942 3.698828 5.572523 4.212532
[9,] 4.289029 4.771115 5.150607 4.424339 6.346775
[10,] 4.289029 4.771115 5.150607 4.424339 6.346775
[11,] 4.289029 4.771115 5.150607 4.424339 6.346775
[12,] 4.289029 4.771115 5.150607 4.424339 6.346775
> library(microbenchmark)
> microbenchmark(get_group_mean_matrix(1200, 300, 50))
Unit: milliseconds
expr min lq mean median uq max neval
get_group_mean_matrix(1200, 300, 50) 76.33337 77.39607 80.76586 78.39808 84.46984 93.40047 100
虽然快很多...
我将接受两种答案之一:
lfe::demeanlist
在加权情况下的操作。从平均值中减去加权偏差后,是否应该获得加权平均值?知道了这一点,我该如何计算加权分组均值矩阵? NB:使用library(lfe)
get_group_mean_matrix_lfe <- function(N, g, p){
X <- matrix(rbinom(N*p, 10, .5), N)
f <- sort((1:(N)) %% g + 1)
w <- runif(N)
X - demeanlist(X, list(factor(f)), weights = w)
}
> set.seed(666)
> get_group_mean_matrix_lfe(12, 3, 5)
[,1] [,2] [,3] [,4] [,5]
[1,] 5.138068 4.001781 5.415467 4.722947 5.999827
[2,] 5.138068 4.001781 5.415467 4.722947 5.999827
[3,] 5.138068 4.001781 5.415467 4.722947 5.999827
[4,] 5.138068 4.001781 5.415467 4.722947 5.999827
[5,] 5.197308 4.067657 3.202478 5.866451 4.066385
[6,] 5.197308 4.067657 3.202478 5.866451 4.066385
[7,] 5.197308 4.067657 3.202478 5.866451 4.066385
[8,] 5.197308 4.067657 3.202478 5.866451 4.066385
[9,] 4.189951 4.887720 4.953305 4.501874 6.385846
[10,] 4.189951 4.887720 4.953305 4.501874 6.385846
[11,] 4.189951 4.887720 4.953305 4.501874 6.385846
[12,] 4.189951 4.887720 4.953305 4.501874 6.385846
> library(microbenchmark)
> microbenchmark(get_group_mean_matrix_lfe(1200, 300, 50))
Unit: milliseconds
expr min lq mean median uq max neval
get_group_mean_matrix_lfe(1200, 300, 50) 6.107421 6.202426 6.500411 6.293648 6.582943 8.350876 100
用矩阵乘法函数替换lfe::demeanlist
可以加快速度,但还不够。我认为问题是循环。
以下是一些示例输入:
%*%
其中RcppEigen
是分组因子。
答案 0 :(得分:1)
Hurr durr我所要做的就是将demeanlist
hurr durr的权重平方根
library(foreach)
get_group_mean_matrix <- function(N, g, p){
X <- matrix(rbinom(N*p, 10, .5), N)
f <- sort((1:(N)) %% g + 1)
w <- runif(N)
dmmat <- foreach(i = unique(f), .combine = rbind) %do% {
idx <- which(f == i)
ws <- w[idx]/sum(w[idx])
t((t(X[idx,]) %*% ws)) %x% rep(1, length(idx))
}
dmmat
}
set.seed(666)
A <- get_group_mean_matrix(12, 3, 5)
library(lfe)
get_group_mean_matrix_lfe <- function(N, g, p){
X <- matrix(rbinom(N*p, 10, .5), N)
f <- sort((1:(N)) %% g + 1)
w <- runif(N)
X - demeanlist(X, list(factor(f)), weights = w^.5)
}
set.seed(666)
B <- get_group_mean_matrix_lfe(12, 3, 5)
> all.equal(A, B)
[1] TRUE