我有4张小图像。
有6、16、9和9位数字。我在模板中将图片与数字进行比较,只有30个变体[0-30]。图片-屏幕截图。数字出现在正方形的不同位置(示例中左角为9,右角为9)。
我使用两种方法:计算白色像素的数量。
original = cv2.imread('im/16.png')
sought = [254,254,254]
result = np.count_nonzero(np.all(original==sought,axis=2))
除6和9之外,这种方法始终有效。在这种情况下,白色像素的数量相等。
第二种方式:获取图像上所有像素的位置并将数据与其他图像进行比较:
# tit - title of image
# same list for equal images
difference = cv2.subtract(original,image_to_compare)
b,g,r = cv2.split(difference)
cv2.countNonZero(b) == 0:
same.append(tit)
if len(same) > 1:
res = same
print(res)
此方法可帮助我将6与9区别开来!在两张角各为9的图像中,它也可以识别出差异。
我希望我的代码能识别每个数字,而看不到图像右侧或左侧的一位数字之间的差异。
答案 0 :(得分:2)
在6
中,您可以在9
和https://s3.eu-central-9.amazonaws.com/my-app/6a68045c14754f3c0b22d206053ff67406217981043a24ad06d3789b67024747125b8900ee8a1e9af2220a5c6558946136cd82807d0666b4678406337239530f/1535565432.jpg
上训练分类器,就像基于Haar特征的级联分类器进行对象检测(https://docs.opencv.org/3.4/d5/d54/group__objdetect.html,https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html)
示例代码在https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
中我不知道这是否是一项任务,如果不固定,则是否可以使用神经网络,请参阅 https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721 Tunnel Vision 章>或https://towardsdatascience.com/convnets-series-spatial-transformer-networks-cff47565ae81,但是空间变压器网络对此问题有点复杂
答案 1 :(得分:1)
您可以找到许多有关OCR的论文和软件,因为它已在许多应用程序中广泛使用。我想使用numpy和opencv为您的问题提供一个非常简单的解决方案,即可完成工作。
我们将做什么:
代码:
import cv2
import numpy as np
treshold = 70
#Treshold every image, so "0" in image means no digit and "1" is digit
image1 = (cv2.imread("number_1.png",0) > treshold).astype(np.uint8)
image2 = (cv2.imread("number_2.png",0) > treshold).astype(np.uint8)
image3 = (cv2.imread("number_3.png",0) > treshold).astype(np.uint8)
image4 = (cv2.imread("number_4.png",0) > treshold).astype(np.uint8)
函数,它将返回给定图像中的数字数组:
def get_images_of_digits(image):
components = cv2.connectedComponentsWithStats(image, 8, cv2.CV_16U) #Separate digits
#Get position of every components
#For details how this works take a look at
#https://stackoverflow.com/questions/35854197/how-to-use-opencvs-connected-components-with-stats-in-python
position_of_digits = components[2]
number_of_digits = len(position_of_digits) - 1 #number of digits found in image
digits = [] #Array with every digit in image
for i in range(number_of_digits):
w = position_of_digits[i+1,0] #Left corner of digit
h = position_of_digits[i+1,1] #Top corner of digit
digit = image[h:h+height_of_digit,w:w+width_of_digit] #Cut this digit out of image
#Count how many white pixels there are
px_count = np.count_nonzero(digit)
#Divide every pixel by square root of count of pixels in digit.
#Why? If we make convolution with the same digit it will give us sweet "1", which means these digits are identical
digit = digit / np.sqrt(px_count)
digits.append(digit)
return digits #Return all digits
获取数字
d_1 = get_images_of_digits(image1)[0] #Digit "9" from first image
d_2 = get_images_of_digits(image2)[0] #Digit "9" from second image
d_3 = get_images_of_digits(image4)[0] #Digit "6" from last image
print(cv2.filter2D(d_1,-1,d_2).max()) #Digit "9" on image 1 and 2 match perfectly (result of convolution is 1).
#Filter2D does convolution (correlation to be precise, but they are the same for our purpose)
将第一个图像中的数字“ 9”和最后一个图像中的数字“ 6”放入数字库。然后浏览图3中找到的每个数字,并将其与我们的数字银行进行比较。如果分数低于0.9,则不匹配。
bank_of_digits = {"9":d_1, "6":d_3}
for digit in get_images_of_digits(image3):
#print(digit)
best_restult = 0.9 #If score is above 0.9, we say it is match
#Maybe tweak this higher for separating chars "8" and "9" and "0"
matching_digit = "?" #Default char, when there is no match
for number in bank_of_digits:
score = cv2.filter2D(digit,-1,bank_of_digits[number]).max() #Returns 0-1 . 1 Means perfect match
print("Score for number " + number +" is: "+ str(np.round(score,2)) )
if score > best_restult: #If we find better match
best_restult = score #Set highest score yet
matching_digit = number #Set best match number
print("Best match: " + matching_digit)
最终结果将是“?”对于图片3中的第一个数字,因为我们的银行中没有数字“ 1”,第二个结果将是“ 6”,得分为0.97。
TLDR:我制作了一种算法,可以将图像中的数字分开,并比较这些数字。将显示最佳匹配。