我试图将RDD [(String,Map [String,Int])]展平为RDD [String,String,Int],最终将其保存为数据框。
val rdd=hashedContent.map(f=>(f._1,f._2.flatMap(x=> (x._1, x._2))))
val rdd=hashedContent.map(f=>(f._1,f._2.flatMap(x=>x)))
所有类型不匹配错误。 对如何扁平化这样的结构有帮助吗? 编辑:
hashedContent -- ("A", Map("acs"->2, "sdv"->2, "sfd"->1)),
("B", Map("ass"->2, "fvv"->2, "ffd"->1)),
("c", Map("dg"->2, "vd"->2, "dgr"->1))
答案 0 :(得分:4)
您很亲密:
rdd.flatMap(x => x._2.map(y => (x._1, y._1, y._2)))
.toDF()
.show()
+---+---+---+
| _1| _2| _3|
+---+---+---+
| A|acs| 2|
| A|sdv| 2|
| A|sfd| 1|
| B|ass| 2|
| B|fvv| 2|
| B|ffd| 1|
| c| dg| 2|
| c| vd| 2|
| c|dgr| 1|
+---+---+---+
数据
val data = Seq(("A", Map("acs"->2, "sdv"->2, "sfd"->1)),
("B", Map("ass"->2, "fvv"->2, "ffd"->1)),
("c", Map("dg"->2, "vd"->2, "dgr"->1)))
val rdd = sc.parallelize(data)
答案 1 :(得分:2)
出于完整性考虑:一种替代解决方案(可能被认为更具可读性)将是首先将RDD
转换为DataFrame
,然后使用explode
转换其结构:< / p>
import org.apache.spark.sql.functions._
import spark.implicits._
rdd.toDF("c1", "map")
.select($"c1", explode($"map"))
.show(false)
// same result:
// +---+---+-----+
// |c1 |key|value|
// +---+---+-----+
// |A |acs|2 |
// |A |sdv|2 |
// |A |sfd|1 |
// |B |ass|2 |
// |B |fvv|2 |
// |B |ffd|1 |
// |c |dg |2 |
// |c |vd |2 |
// |c |dgr|1 |
// +---+---+-----+