我读了很多话题,但是没有一个答案对我有帮助...
我有DNN分类器:
dataTable
DataFrame X_train包含452个数字列(其中大多数-由OneHodEncode虚拟列转换):形状为(84692,452)。 len(feature_columns)= 452
但是当我尝试使用脚本保存模型时:
import tensorflow as tf
feature_columns = []
for key in X_train.keys():
feature_columns.append(tf.feature_column.numeric_column(key=key))
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=2
)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
dataset = dataset.shuffle(10).repeat().batch(batch_size)
return dataset
#train the Model
batch_size = 100
train_steps = 400
for i in range(0,100):
classifier.train(
input_fn=lambda:train_input_fn(X_train, y_train, batch_size),
steps=train_steps
)
我遇到错误:
ValueError:无效的功能dummy_feature_N_value_M:0。
还尝试使用其他脚本进行保存(但在这里我并不了解每个参数值...):
def serving_input_receiver_fn():
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)()
classifier.export_savedmodel(export_dir_base="export_model/", serving_input_receiver_fn=_serving_input_receiver_fn)
但是它还会返回几乎错误:
ValueError:功能 dummy_feature_N_value_M 不在功能字典中。
当我查看 feature_columns 列表时-是否存在:
_NumericColumn(key ='dummy_feature_N_value_M',shape =(1,),default_value = None,dtype = tf.float32,normalizer_fn = None),
我做错了什么?
答案 0 :(得分:0)
不知道那是什么...但是现在一切正常。
首先,我尝试不使用自己创建的OneHodEncode虚拟列,而是输入带有分类列的初始数据框“ train_dummy_features”:
# split columns and indexes of categorical and continues columns
categorical_columns = list(train_dummy_features.select_dtypes(include=['category','object']))
print(categorical_columns)
numeric_columns = list(train_dummy_features.select_dtypes(include=['int','uint8']))
print(numeric_columns)
cat_features_indexes = [train_dummy_features.columns.get_loc(c) for c in train_dummy_features.columns if c in categorical_columns]
print(cat_features_indexes)
continues_features_indexes = [train_dummy_features.columns.get_loc(c) for c in train_dummy_features.columns if c not in categorical_columns]
print(continues_features_indexes)
然后使用TensorFlow函数创建feature_columns列表:
numeric_features = [tf.feature_column.numeric_column(key = column) for column in numeric_columns]
print(numeric_features)
categorical_features = [
tf.feature_column.embedding_column(
categorical_column = tf.feature_column.categorical_column_with_vocabulary_list
(key = column
, vocabulary_list = train_dummy_features[column].unique()
),
dimension = len(train_dummy_features[column].unique())
)
for column in categorical_columns
]
print(categorical_features[3])
feature_columns = numeric_features + categorical_features
feature_columns[2]
并将带有分类列的初始数据框“ train_dummy_features”放入X_train:
X = train_dummy_features
y = train_measure # since we already have dataframe with the measure
X_train, y_train = X, y
已声明的初始分类训练的分类器中指定了“分类器”和“ train_input_fn”。
之后
def serving_input_receiver_fn():
#feature_spec = {INPUT_TENSOR_NAME: tf.FixedLenFeature(dtype=tf.float32, shape=[452])}
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)()
classifier.export_savedmodel(export_dir_base="export_model2/", serving_input_receiver_fn=serving_input_receiver_fn)
和
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_tensors')
receiver_tensors = {"predictor_inputs": serialized_tf_example}
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) #{"words": tf.FixedLenFeature([len(feature_columns)],tf.float32)}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
classifier.export_savedmodel(export_dir_base="export_model3/", serving_input_receiver_fn=serving_input_receiver_fn)
成功导出了模型。
我尝试重复昨天导致错误的步骤的第一版-但现在无法重复该错误。
因此,所描述的步骤已成功训练并导出tf.estimator.DNNClassifier模型