我有一个很大的.npz
numpy训练文件,我想更有效地阅读它。我尝试遵循Tensorflow文档(https://www.tensorflow.org/guide/datasets#consuming_numpy_arrays)中的方法:
作为替代方案,您可以根据以下内容定义数据集: tf.placeholder()张量,并在您输入NumPy数组时 在数据集上初始化Iterator。
但是,在实现迭代器之后,我的模型甚至消耗了两倍多的内存。您有任何线索在这里可能出什么问题吗?
def model(batch_size):
x = tf.placeholder(tf.float32,[None, IMGSIZE,IMGSIZE,1])
y = tf.placeholder(tf.float32,[None, n_landmark * 2])
z = tf.placeholder(tf.int32, [None, ])
Ret_dict['x'] = x
Ret_dict['y'] = y
Ret_dict['z'] = z
Ret_dict['iterator'] = iter_
dataset = tf.data.Dataset.from_tensor_slices((x, y, z)).batch(batch_size)
iter_ = dataset.make_initializable_iterator()
InputImage, GroundTruth, GroundTruth_Em = iter_.get_next()
Conv1a = tf.layers.conv2d(InputImage,64,3,1,..)
(...)
def main():
trainSet = np.load(args.datasetDir)
Xtrain = trainSet['Image']
Ytrain = trainSet['Label_1']
Ytrain_em = trainSet['Label_2']
with tf.Session() as sess:
my_model = model(BATCH_SIZE)
Saver = tf.train.Saver()
Saver.restore(sess, args.pretrainedModel)
sess.run(
[model['Optimizer'], model['iterator'].initializer],
feed_dict={model['x']:Xtrain,
model['y']:Ytrain,
model['z']:Ytrain_em})