假设我具有以下参数的网络:
现在,我知道损失是以以下方式计算的:关于每个类别,二进制交叉熵应用于图像中的每个像素。因此,基本上每个像素都会有5个损耗值
此步骤后会发生什么?
当我训练我的网络时,它只显示一个时期的单个损失值。 产生单个值需要发生许多级别的损失累积,而在文档/代码中根本不清楚如何发生。
axis=-1
。那么,这是每个类别的所有像素的平均值还是所有类别的平均值,或者两者都是? 以不同的方式陈述它:如何将不同类别的损失相结合以产生图像的单个损失值?
文档中没有对此进行完全解释,这对不管网络类型如何的人都对keras进行多类预测的人都将非常有帮助。这是keras code开头的链接,其中第一个传递损失函数。
我能找到的最接近解释的是
loss:字符串(目标函数的名称)或目标函数。见损失。如果模型具有多个输出,则可以通过传递字典或损失列表来对每个输出使用不同的损失。该模型将使损失值最小化,将是所有单个损失的总和
来自keras。那么这是否意味着图像中每个类别的损失都可以简单地求和?
示例代码,供其他人尝试。这是从Kaggle借用并针对多标签预测进行修改的基本实现:
# Build U-Net model
num_classes = 5
IMG_DIM = 256
IMG_CHAN = 3
weights = {0: 1, 1: 1, 2: 1, 3: 1, 4: 1000} #chose an extreme value just to check for any reaction
inputs = Input((IMG_DIM, IMG_DIM, IMG_CHAN))
s = Lambda(lambda x: x / 255) (inputs)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (s)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (p1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (p2)
c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (c3)
p3 = MaxPooling2D((2, 2)) (c3)
c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (p3)
c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (c4)
p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (p4)
c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (c5)
u6 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u6)
c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (c6)
u7 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u7)
c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (c7)
u8 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u8)
c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (c8)
u9 = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same') (c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (u9)
c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (c9)
outputs = Conv2D(num_classes, (1, 1), activation='sigmoid') (c9)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss=weighted_loss(weights), metrics=[mean_iou])
def weighted_loss(weightsList):
def lossFunc(true, pred):
axis = -1 #if channels last
#axis= 1 #if channels first
classSelectors = K.argmax(true, axis=axis)
classSelectors = [K.equal(tf.cast(i, tf.int64), tf.cast(classSelectors, tf.int64)) for i in range(len(weightsList))]
classSelectors = [K.cast(x, K.floatx()) for x in classSelectors]
weights = [sel * w for sel,w in zip(classSelectors, weightsList)]
weightMultiplier = weights[0]
for i in range(1, len(weights)):
weightMultiplier = weightMultiplier + weights[i]
loss = BCE_loss(true, pred) - (1+dice_coef(true, pred))
loss = loss * weightMultiplier
return loss
return lossFunc
model.summary()
在这里可以找到实际的BCE-DICE丢失功能。
问题的动机:根据上述代码,在20个时期后,网络的总验证损失约为1%;但是,前4个类别的联合得分平均交集率均高于95%,而最后4个类别的联合得分均值大于23%。清楚地表明5年级的学生表现不佳。但是,这种准确性上的损失根本没有反映在损失中。因此,这意味着样本的单个损失被合并在一起,从而完全抵消了我们在第五类中看到的巨大损失。而且,因此,如果将每个样本的损失分批合并,则它仍然非常低。我不确定如何协调此信息。
答案 0 :(得分:2)
尽管我已经在related answer中提到了此答案的一部分,但让我们逐步检查源代码,以获取更多详细信息,以具体找到答案。
首先,让我们前馈(!):there is a call到weighted_loss
函数,该函数将y_true
,y_pred
,sample_weight
和mask
作为输入:
weighted_loss = weighted_losses[i]
# ...
output_loss = weighted_loss(y_true, y_pred, sample_weight, mask)
weighted_loss
实际上是an element of a list,其中包含传递给fit
方法的所有(增强的)损失函数:
weighted_losses = [
weighted_masked_objective(fn) for fn in loss_functions]
我提到的“增强”一词在这里很重要。这是因为,如您在上面看到的那样,实际损失函数由另一个称为weighted_masked_objective
的函数包装,该函数定义如下:
def weighted_masked_objective(fn):
"""Adds support for masking and sample-weighting to an objective function.
It transforms an objective function `fn(y_true, y_pred)`
into a sample-weighted, cost-masked objective function
`fn(y_true, y_pred, weights, mask)`.
# Arguments
fn: The objective function to wrap,
with signature `fn(y_true, y_pred)`.
# Returns
A function with signature `fn(y_true, y_pred, weights, mask)`.
"""
if fn is None:
return None
def weighted(y_true, y_pred, weights, mask=None):
"""Wrapper function.
# Arguments
y_true: `y_true` argument of `fn`.
y_pred: `y_pred` argument of `fn`.
weights: Weights tensor.
mask: Mask tensor.
# Returns
Scalar tensor.
"""
# score_array has ndim >= 2
score_array = fn(y_true, y_pred)
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in Theano
mask = K.cast(mask, K.floatx())
# mask should have the same shape as score_array
score_array *= mask
# the loss per batch should be proportional
# to the number of unmasked samples.
score_array /= K.mean(mask)
# apply sample weighting
if weights is not None:
# reduce score_array to same ndim as weight array
ndim = K.ndim(score_array)
weight_ndim = K.ndim(weights)
score_array = K.mean(score_array,
axis=list(range(weight_ndim, ndim)))
score_array *= weights
score_array /= K.mean(K.cast(K.not_equal(weights, 0), K.floatx()))
return K.mean(score_array)
return weighted
因此,有一个嵌套函数weighted
,它实际上在行fn
中调用了实损失函数score_array = fn(y_true, y_pred)
。现在,具体来说,在所提供的OP的例子中,fn
(即损失函数)是binary_crossentropy
。因此,我们需要看一下Keras中binary_crossentropy()
的定义:
def binary_crossentropy(y_true, y_pred):
return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
依次调用后端函数K.binary_crossentropy()
。如果使用Tensorflow作为后端,则K.binary_crossentropy()
的定义如下:
def binary_crossentropy(target, output, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
# Arguments
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
# Returns
A tensor.
"""
# Note: tf.nn.sigmoid_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
_epsilon = _to_tensor(epsilon(), output.dtype.base_dtype)
output = tf.clip_by_value(output, _epsilon, 1 - _epsilon)
output = tf.log(output / (1 - output))
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target,
logits=output)
tf.nn.sigmoid_cross_entropy_with_logits
返回:
与
logits
形状相同的张量,具有逻辑对数损失。
现在,让我们反向传播(!):考虑以上注意事项,K.binray_crossentropy
的输出形状将与y_pred
(或y_true
)相同。如OP所述,y_true
的形状为(batch_size, img_dim, img_dim, num_classes)
。因此,将K.mean(..., axis=-1)
应用于形状为(batch_size, img_dim, img_dim, num_classes)
的张量上,这将导致输出形状为(batch_size, img_dim, img_dim)
的张量。因此,对于图像中的每个像素,对所有类别的损耗值进行平均。因此,上述score_array
函数中weighted
的形状将为(batch_size, img_dim, img_dim)
。还有一个步骤:weighted
函数中的return语句再次取均值,即return K.mean(score_array)
。那么它如何计算均值?如果您查看mean
后端函数的定义,您会发现axis
参数默认为None
:
def mean(x, axis=None, keepdims=False):
"""Mean of a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: A list of integer. Axes to compute the mean.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1 for each entry in `axis`. If `keepdims` is `True`,
the reduced dimensions are retained with length 1.
# Returns
A tensor with the mean of elements of `x`.
"""
if x.dtype.base_dtype == tf.bool:
x = tf.cast(x, floatx())
return tf.reduce_mean(x, axis, keepdims)
它调用给定axis=None
参数的tf.reduce_mean()
,取输入张量的所有轴的均值并返回一个值。因此,计算形状为(batch_size, img_dim, img_dim)
的整个张量的平均值,这意味着对批次中的所有标签及其所有像素取平均值,并作为代表损失值的单个标量值返回。然后,该损失值由Keras报告,并用于优化。
奖金:如果我们的模型具有多个输出层并因此使用了多个损失函数,该怎么办?
记住我在此答案中提到的第一段代码:
weighted_loss = weighted_losses[i]
# ...
output_loss = weighted_loss(y_true, y_pred, sample_weight, mask)
如您所见,有一个i
变量用于索引数组。您可能已经猜对了:它实际上是循环的一部分,该循环使用其指定的损耗函数为每个输出层计算损耗值,然后将所有这些损耗值的(加权)和取为compute the total loss:
# Compute total loss.
total_loss = None
with K.name_scope('loss'):
for i in range(len(self.outputs)):
if i in skip_target_indices:
continue
y_true = self.targets[i]
y_pred = self.outputs[i]
weighted_loss = weighted_losses[i]
sample_weight = sample_weights[i]
mask = masks[i]
loss_weight = loss_weights_list[i]
with K.name_scope(self.output_names[i] + '_loss'):
output_loss = weighted_loss(y_true, y_pred,
sample_weight, mask)
if len(self.outputs) > 1:
self.metrics_tensors.append(output_loss)
self.metrics_names.append(self.output_names[i] + '_loss')
if total_loss is None:
total_loss = loss_weight * output_loss
else:
total_loss += loss_weight * output_loss
if total_loss is None:
if not self.losses:
raise ValueError('The model cannot be compiled '
'because it has no loss to optimize.')
else:
total_loss = 0.
# Add regularization penalties
# and other layer-specific losses.
for loss_tensor in self.losses:
total_loss += loss_tensor
答案 1 :(得分:0)
1) What gets combined first - (1) the loss values of the class(for instance 10 values(one for each class) get combined per pixel) and
则图像中的所有像素或(2)图像中的所有像素 每个班级,那么所有班级损失是加在一起的? 2)这些不同的像素组合到底发生了什么-在何处求和/在何处取平均值?
我对(1)的回答: 训练一批图像时,通过计算非线性函数,损失和优化(更新权重)来训练由像素值组成的数组。 未针对每个像素值计算损失;而是针对每张图片完成。
在S形中(对于非线性的最简单示例)使用像素值(X_train),权重和偏差(b)来计算预测的y值。这与y_train(一次批处理)一起用于计算损失,并使用SGD,动量,Adam等优化方法之一进行了优化,以更新权重和偏差。
我对(2)的回答: 在非线性操作期间,像素值(X_train)与权重组合(通过点积)并相加以偏置以形成预测目标值。
一批中可能有属于不同班级的训练示例。将对应的目标值(针对每个类别)与对应的预测值进行比较,以计算损失。因此,将所有损失相加是完全可以的。
只要您将其与正确类别的对应目标进行比较,则它们属于一个类别还是多个类别确实无关紧要。有道理吗?