我粘贴了我的一小段代码,试图在加载数据时将数据加载到hive表(Linux框)中,当我通过窗口计算机执行相同的操作时,我遇到了以下错误提示:能够成功将数据加载到配置单元表中。我正在使用与窗口平台相同的版本。
ServerUrl=jdbc:hive2://hiveWeb.xxx.com:10000/xxxxx;principal=hive/hiveWeb.xxx.com@internal.imsxcnkm.com;SSL=1;mapred.job.queue.name=co9l;AuthMech=3;user=xxxxx;password=xxxx
val jdbcOptions:JDBCOptions = new JDBCOptions(Map(
"url"->s"$serverUrl",
"dbtable"-> "hiveTable",
"driver" -> "com.cloudera.hive.jdbc41.HS2Driver",
"batchSize"->"10000",
"SSLTrustStore"->"/usr/java/jdk1.8.0_144/jre/lib/security/jssecaxx",
"format" -> "parquet"
))
JdbcUtils.saveTable(dataFrame,serverUrl,sourceTableName,jdbcOptions)
build.sbt:-
.settings(libraryDependencies ++= Seq("org.apache.spark" %% "spark-sql" % "2.1.0" % "provided",
"org.apache.spark" %% "spark-core" % "2.1.0" % "provided",
//"org.apache.spark" %% "spark-sql" % "2.1.0" ,
//"org.apache.spark" %% "spark-core" % "2.1.0" ,
"org.apache.hive" % "hive-jdbc" % "1.1.0",
"org.apache.spark" %% "spark-hivecontext-compatibility" % "2.0.0-preview",
"com.ClouderaHiveJDBC41"% "ClouderaHiveJDBC41" % "2.5.17.1047",
"org.apache.hadoop" % "hadoop-client" % "1.1.0" % "provided"
))
错误:-
ava.sql.SQLFeatureNotSupportedException: [Cloudera][JDBC](10220) Driver does not support this optional feature.
at com.cloudera.hiveserver2.exceptions.ExceptionConverter.toSQLException(Unknown Source)
at com.cloudera.hiveserver2.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)
at com.cloudera.hiveserver2.jdbc.common.SPreparedStatement.setNull(Unknown Source)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:583)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)