在这里,我想使用python预测相同的时间值(回归神经网络)。在这里,我有两个输出和三个输入。当我运行代码时,它给我一个错误“ variance_scaling_initializer()得到了意外的关键字参数'distribution'”。您能帮我解决问题吗? 在这里,我上传了我的代码,
n_neurons_1 = 24
n_neurons_2 = 12
n_target = 2
softmax = 2
weight_initializer = tf.contrib.layers.variance_scaling_initializer(mode= "FAN_AVG", distribution ="uniform", scale = softmax)
bias_initializer = tf.zeros_initializer()
w_hidden_1 = tf.Variable(weight_initializer([n_time_dimensions,n_neurons_1]))
bias_hidden_1= tf.Variable(bias_initializer([n_neurons_1]))
w_hidden_2= tf.Variable(weight_initializer([n_neurons_1,n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
w_out = tf.Variable(weight_initializer([n_neurons_2,2]))
bias_out = tf.Variable(bias_initializer([2]))
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, w_hidden_1),bias_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(X, w_hidden_2),bias_hidden_2))
out = tf.transpose(tf.add(tf.matmul(hidden_2, w_out),bias_out))
我的数据集是
date time g p c apparentg
6/8/2018 0:06:15 141 131 136 141
6/8/2018 0:09:25 95 117 95 95
6/8/2018 0:11:00 149 109 139 149
6/8/2018 0:13:50 120 103 95 120
6/8/2018 0:16:20 135 97 105 135
6/8/2018 0:19:00 63 NaN 97 63
6/8/2018 0:20:00 111 NaN 100 111
6/8/2018 0:22:10 115 NaN 115 115
6/8/2018 0:23:40 287 NaN NaN 287
TypeError Traceback (most recent call last)
<ipython-input-26-9ceeb97429b1> in <module>()
31 n_target = 2
32 softmax = 2
---> 33 weight_initializer = tf.contrib.layers.variance_scaling_initializer(mode= "FAN_AVG", distribution ="uniform", scale = softmax)
34 bias_initializer = tf.zeros_initializer()
35 w_hidden_1 = tf.Variable(weight_initializer([n_time_dimensions,n_neurons_1]))
TypeError: variance_scaling_initializer() got an unexpected keyword argument 'distribution'
答案 0 :(得分:1)
查看文档https://www.tensorflow.org/api_docs/python/tf/contrib/layers/variance_scaling_initializer
DECLARE
curSel SYS_REFCURSOR;
BEGIN
OPEN curSel FOR ...;
sqldynamic(curSel);
END;
和
tf.contrib.layers.variance_scaling_initializer(
factor=2.0,
mode='FAN_IN',
uniform=False,
seed=None,
dtype=tf.float32
)
所以尝试
uniform: Whether to use uniform or normal distributed random initialization.
代替
uniform = True
在函数调用中
distribution ="uniform"
该函数中似乎也没有 tf.contrib.layers.variance_scaling_initializer(mode= "FAN_AVG", distribution ="uniform", scale = softmax)
属性。