如何在CNN的末端连接RNN以训练视频帧?

时间:2018-08-27 03:45:00

标签: tensorflow neural-network conv-neural-network recurrent-neural-network

我正在尝试将视频分类为图像分类,以便将帧用作分类方法。但是我不知道如何编码。 我将Inception ResNet用作CNN,但不知道任何RNN或如何使用它们。

1 个答案:

答案 0 :(得分:0)

这是ML_machine,这是我想告诉你的, 这是CNN的实现,用于对mnist数据进行分类,它不是我的数据,来自here

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

要将此CNN以及随后的完全连接的层转换为CNN到RNN,只需更改该行

model.add(Dense(num_classes, activation='softmax'))

进入

model.add(SimpleRNN(num_classes, activation='softmax'))

(当然,您需要导入它)

您可能必须更改网络的输入维度和/或TimeDistribute整个CNN部分,我在某些版本的tensorflow中遇到了麻烦,而其他版本则没有

编辑:

我自己给您的代码遇到了一些问题,这比我想象的要难,因为用循环网络结束CNN网络的规模很大,这是我设法做到的:

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=in_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
# NO MORE POOLING
model.add(Dropout(0.25))
# Reshape with the first argument being the number of filter in your last conv layer
model.add(Reshape((64, -1)))
# Just write this Permute after, its complicated why
model.add(Permute((2, 1)))
# it can also be an LSTM
model.add(SimpleRNN(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

EDIT2,一个简单的完全连接的NN在keras中的虚拟示例:

trng_input = np.random.uniform(size=(1000, 4))
trng_output = np.column_stack([np.sin(trng_input).sum(axis=1), np.cos(trng_input).sum(axis=1)])

model = Sequential()
model.add(Dense(6, input_shape=trng_input.shape, activation='relu'))
model.add(Dense(2, activation='sigmoid'))
model.compile(loss='MSE', optimizer=keras.optimizer.Adam(), metrics=['accuracy'])