我正在Google DataProc上的Scala中编写一个Spark作业,该作业每天执行并处理记录每个带有交易时间的记录。记录按年份-月份组合进行分组,每个组都写入GCS中单独的每月实木复合地板文件(例如2018-07-file.parquet
,2018-08-file.parquet
等)。请注意,这些文件可以追溯到大约5年后,形成一个非常大的数据集(〜1TB)。
我想将这些文件写入BigQuery,并让工作仅更新当前运行中已更改的每月记录。为简单起见,我想删除具有更新记录的任何月份的现有记录,然后仅从每月实木复合地板文件中加载数据。
我正在尝试使用BigQuery Connector for DataProc,但似乎只使用support updating of an entire table,而不是使用日期字段过滤的一批记录。
什么是最好的方法?我尝试将完整的BigQuery库JAR包含到我的项目中,并使用数据操作查询来删除现有的每月记录,如下所示:
def writeDataset(sparkContext: SparkContext, monthYear: String, ds: Dataset[TargetOrder]) = {
val dtMonthYear = FeedWriter.parquetDateFormat.parse(monthYear)
val bigquery: BigQuery = BigQueryOptions.getDefaultInstance.getService
val queryConfig: QueryJobConfiguration =
QueryJobConfiguration.newBuilder("DELETE FROM `" + getBQTableName(monthYear) + "` " +
"WHERE header.trans_time BETWEEN PARSE_DATETIME('" + FeedWriter.parquetDateFormat.toPattern + "', '" + monthYear + "') " +
"AND PARSE_DATETIME('" + FeedWriter.parquetDateFormat.toPattern + "', '" + DateUtils.addMonths(dtMonthYear, 1) + "') ")
.setUseLegacySql(false)
.build();
val jobId: JobId = JobId.of(UUID.randomUUID().toString());
val queryJob: Job = bigquery.create(JobInfo.newBuilder(queryConfig).setJobId(jobId).build()).waitFor()
}
但是我遇到以下错误(我假设不允许在DataProc作业中包含完整的BQ客户端JAR,或者在BQ连接器中不能很好地发挥作用):
java.lang.NoSuchMethodError: com.google.api.services.bigquery.model.JobReference.setLocation(Ljava/lang/String;)Lcom/google/api/services/bigquery/model/JobReference;
at com.google.cloud.bigquery.JobId.toPb(JobId.java:114)
at com.google.cloud.bigquery.JobInfo.toPb(JobInfo.java:370)
at com.google.cloud.bigquery.BigQueryImpl.create(BigQueryImpl.java:198)
at com.google.cloud.bigquery.BigQueryImpl.create(BigQueryImpl.java:187)
at ca.mycompany.myproject.output.BigQueryWriter$.writeDataset(BigQueryWriter.scala:39)
答案 0 :(得分:1)
我发现在DataProc作业中包含完整的客户端JAR似乎不起作用(因此为什么它们为BQ和其他服务创建了单独的连接器扩展),所以我最终让我的Dataproc作业向< strong>“发布/订阅队列” ,指示哪个每月的实木复合地板文件已更新。然后,我创建了一个 Cloud Function 来监视发布/订阅队列,并生成一个 BigQuery作业以仅加载已更改的每月文件。
我能够通过使用表分区(例如 MyTable $ 20180101 )从BQ表中删除月记录,并将所有月记录分组到同一天(当前,BQ仅支持按DAY而不是按月对表进行分区,因此,我必须为设置为2018-01-01的2018-01-xx中的所有记录的每个记录创建一个单独的字段。 / p>
Dataproc中的Scala代码示例,以写入发布/订阅队列:
import java.text.SimpleDateFormat
import java.util.{Date, TimeZone, UUID}
import ca.my.company.config.ConfigOptions
import com.google.api.client.googleapis.javanet.GoogleNetHttpTransport
import com.google.api.client.json.jackson2.JacksonFactory
import com.google.api.services.pubsub.Pubsub
import com.google.api.services.pubsub.model.{PublishRequest, PubsubMessage}
import com.google.cloud.hadoop.util.RetryHttpInitializer
import org.apache.spark.streaming.pubsub.SparkGCPCredentials
import scala.collection.mutable
case class MyPubSubMessage (jobId: UUID, processedDate: Date, fileDate: Date, updatedFilePath: String)
object PubSubWriter {
private val PUBSUB_APP_NAME: String = "MyPubSubWriter"
private val messages: mutable.ListBuffer[PubsubMessage] = mutable.ListBuffer()
private val publishRequest = new PublishRequest()
private lazy val projectId: String = ConfigOptions().pubsubConfig.projectId
private lazy val topicId: String = ConfigOptions().pubsubConfig.topicId
private lazy val client = new Pubsub.Builder(
GoogleNetHttpTransport.newTrustedTransport(),
JacksonFactory.getDefaultInstance(),
new RetryHttpInitializer(
SparkGCPCredentials.builder.build().provider,
PUBSUB_APP_NAME
))
.setApplicationName(PUBSUB_APP_NAME)
.build()
def queueMessage(message: TlogPubSubMessage) {
if (message == null) return
val targetFileDateFormat = new SimpleDateFormat("yyyyMMdd")
val isoDateFormat = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'")
isoDateFormat.setTimeZone(TimeZone.getTimeZone("UTC"))
import scala.collection.JavaConversions._
val pubSubMessage = new PubsubMessage()
.setAttributes(Map("msgType" -> "t-log-notification", "jobId" -> message.jobId.toString, "processedDate" -> isoDateFormat.format(message.processedDate), "fileDate" -> targetFileDateFormat.format(message.fileDate)))
messages.synchronized {
messages.append(pubSubMessage.encodeData(message.updatedFilePath.getBytes))
}
}
def publishMessages(): Unit = {
import scala.collection.JavaConversions._
publishRequest.setMessages(messages)
client.projects().topics()
.publish(s"projects/$projectId/topics/$topicId", publishRequest)
.execute()
println(s"Update notifications: successfully sent ${messages.length} message(s) for topic '${topicId}' to Pub/Sub")
}
}
我的Python云函数示例从队列中使用并生成BQ加载作业:
def update_bigquery(data, context):
import base64
from datetime import datetime
from dateutil import parser
from google.cloud import bigquery
from google.cloud.bigquery.table import TimePartitioning
from google.api_core.exceptions import GoogleAPICallError
dataset_id = 'mydatasetname'
table_id_base = 'mytablename'
# The data field looks like this:
# {'@type': 'type.googleapis.com/google.pubsub.v1.PubsubMessage', 'attributes': {'fileDate': '20171201',
# 'jobId': '69f6307e-28a1-40fc-bb6d-572c0bea9346', 'msgType': 't-log-notification',
# 'processedDate': '2018-09-08T02:51:54Z'}, 'data': 'Z3M6Ly9nY3MtbGRsLWRzLWRhdGE...=='}
# Retrieve file path (filter out SUCCESS file in the folder path) and build the partition name
attributes = data['attributes']
file_path = base64.b64decode(data['data']).decode('utf-8') + "/part*"
partition_name = attributes['fileDate']
table_partition = table_id_base + "$" + partition_name
# Instantiate BQ client
client = bigquery.Client()
# Get reference to dataset and table
dataset_ref = client.dataset(dataset_id)
table_ref = dataset_ref.table(table_partition)
try:
# This only deletes the table partition and not the entire table
client.delete_table(table_ref) # API request
print('Table {}:{} deleted.'.format(dataset_id, table_partition))
except GoogleAPICallError as e:
print('Error deleting table ' + table_partition + ": " + str(e))
# Create BigQuery loading job
job_config = bigquery.LoadJobConfig()
job_config.source_format = bigquery.SourceFormat.PARQUET
job_config.time_partitioning = TimePartitioning(field='bigQueryPartition')
try :
load_job = client.load_table_from_uri(
file_path,
dataset_ref.table(table_partition),
job_config=job_config) # API request
print('Starting job {}'.format(load_job.job_id))
# This can be commented-out to allow the job to run purely asynchronously
# though if it fails, I'm not sure how I could be notified
# For now, I will set this function to the max timeout (9 mins) and see if the BQ load job can consistently complete in time
load_job.result() # Waits for table load to complete.
print('Job finished.')
except GoogleAPICallError as e:
print("Error running BQ load job: " + str(e))
raise e
return 'Success'
答案 1 :(得分:0)
bigquery4s怎么样?
它是BQ Java客户端的Scala包装器。。我遇到了同样的问题,对我有用。